
Infrastructure and Application Performance
Monitoring

Prometheus Prometheus
 Up & Running Up & Running

Julien Pivotto
& Brian Brazil

Second
EditionSECOND

EDITION

2nd Edition

SOF T WARE DEVELOPMENT

“Julien and Brian have
been absolutely key in
developing Prometheus,
and their deep expertise
is reflected in this book. It
offers invaluable practical
advice for deploying
and using Prometheus in
real-world scenarios.”

—Julius Volz
Cofounder of Prometheus
and founder of PromLabs

“With best practices and
instrumentation advice
directly from core Prometheus
developers, this book will
help you monitor your
services with confidence.”

— TJ Hoplock
Senior Observability SRE, NS1

Prometheus: Up & Running

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Get up to speed with Prometheus, the metrics-based
monitoring system used in production by thousands of
organizations. This updated edition provides site reliability
engineers, Kubernetes administrators, and software
developers with a hands-on introduction to the most
important aspects of Prometheus, including dashboarding
and alerting, direct code instrumentation, and metric
collection from third-party systems with exporters.

Prometheus server maintainer Julien Pivotto and core
developer Brian Brazil demonstrate how to use the system
for application and infrastructure monitoring. You’ll learn
the Prometheus setup, Node Exporter, and Alertmanager,
and discover how to use these tools for application and
infrastructure monitoring. You’ll understand why this
open source system has continued to gain popularity.

• Monitor your infrastructure with Node Exporter and use
collectors for network, disks, and pressure metrics

• Discover where and how much instrumentation
to apply to your application code

• Learn about Grafana, a popular tool for building dashboards

• Gain views of your machines and services using
discovery, including the new HTTP SD mechanism

• Use Prometheus with Kubernetes and examine
exporters you can use with containers

• Explore Prometheus’s improvements and
features, including trigonometry functions

• Learn how Prometheus supports security features
including TLS and basic authentication

Julien Pivotto has been a leading
contributor to the Prometheus server
and the CNCF ecosystem since 2017.
Currently, he is a principal software
architect and cofounder at O11y.

Brian Brazil is the founder of Robust
Perception and a Prometheus
core developer. He’s well known
in the community, having given
countless conference presentations
and writing a widely read blog.

US $65.99 CAN $82.99
ISBN: 978-1-098-13114-2

SECOND
EDITION

Julien Pivotto and Brian Brazil

Prometheus: Up & Running
Infrastructure and Application

Performance Monitoring

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13114-2

[LSI]

Prometheus: Up & Running, Second Edition
by Julien Pivotto and Brian Brazil

Copyright © 2023 Julien Pivotto. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Rita Fernando
Production Editor: Ashley Stussy
Copyeditor: Kim Cofer
Proofreader: Sonia Saruba

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2018: First Edition
April 2023: Second Edition

Revision History for the Second Edition
2023-04-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098131142 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Prometheus: Up & Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098131142

Table of Contents

Preface. xi

Part I. Introduction

1. What Is Prometheus?. 3
What Is Monitoring? 4

A Brief and Incomplete History of Monitoring 6
Categories of Monitoring 7

Prometheus Architecture 11
Client Libraries 12
Exporters 13
Service Discovery 14
Scraping 14
Storage 15
Dashboards 15
Recording Rules and Alerts 16
Alert Management 16
Long-Term Storage 17

What Prometheus Is Not 17

2. Getting Started with Prometheus. 19
Running Prometheus 19
Using the Expression Browser 23
Running the Node Exporter 27
Alerting 31

iii

Part II. Application Monitoring

3. Instrumentation. 41
A Simple Program 41
The Counter 43

Counting Exceptions 45
Counting Size 47

The Gauge 47
Using Gauges 48
Callbacks 50

The Summary 50
The Histogram 52

Buckets 53
Unit Testing Instrumentation 56
Approaching Instrumentation 57

What Should I Instrument? 57
How Much Should I Instrument? 59
What Should I Name My Metrics? 60

4. Exposition. 65
Python 66

WSGI 66
Twisted 67
Multiprocess with Gunicorn 68

Go 71
Java 72

HTTPServer 73
Servlet 74

Pushgateway 76
Bridges 79
Parsers 80
Text Exposition Format 80

Metric Types 81
Labels 82
Escaping 82
Timestamps 82
check metrics 83

OpenMetrics 83
Metric Types 84
Labels 85
Timestamps 85

iv | Table of Contents

5. Labels. 87
What Are Labels? 87
Instrumentation and Target Labels 88
Instrumentation 88

Metric 90
Multiple Labels 90
Child 91

Aggregating 93
Label Patterns 94

Enum 94
Info 96

When to Use Labels 98
Cardinality 99

6. Dashboarding with Grafana. 103
Installation 104
Data Source 106
Dashboards and Panels 107

Avoiding the Wall of Graphs 109
Time Series Panel 109

Time Controls 111
Stat Panel 113
Table Panel 115
State Timeline Panel 117
Template Variables 118

Part III. Infrastructure Monitoring

7. Node Exporter. 125
CPU Collector 126
Filesystem Collector 127
Diskstats Collector 128
Netdev Collector 129
Meminfo Collector 130
Hwmon Collector 130
Stat Collector 131
Uname Collector 132
OS Collector 132
Loadavg Collector 132
Pressure Collector 133
Textfile Collector 134

Table of Contents | v

Using the Textfile Collector 135
Timestamps 137

8. Service Discovery. 139
Service Discovery Mechanisms 140

Static 141
File 142
HTTP 145
Consul 146
EC2 148

Relabeling 149
Choosing What to Scrape 150
Target Labels 153

How to Scrape 162
metric_relabel_configs 164
Label Clashes and honor_labels 166

9. Containers and Kubernetes. 169
cAdvisor 169

CPU 170
Memory 171
Labels 171

Kubernetes 172
Running in Kubernetes 172
Service Discovery 174
kube-state-metrics 184

Alternative Deployments 185

10. Common Exporters. 187
Consul 187
MySQLd 189
Grok Exporter 191
Blackbox 194

ICMP 195
TCP 199
HTTP 201
DNS 204
Prometheus Configuration 205

11. Working with Other Monitoring Systems. 209
Other Monitoring Systems 209
InfluxDB 211

vi | Table of Contents

StatsD 212

12. Writing Exporters. 215
Consul Telemetry 215
Custom Collectors 219

Labels 223
Guidelines 224

Part IV. PromQL

13. Introduction to PromQL. 229
Aggregation Basics 229

Gauge 229
Counter 231
Summary 232
Histogram 233

Selectors 235
Matchers 235
Instant Vector 237
Range Vector 238
Subqueries 240
Offset 241
At Modifier 242

HTTP API 242
query 242
query_range 245

14. Aggregation Operators. 249
Grouping 249

without 250
by 251

Operators 252
sum 252
count 253
avg 254
group 255
stddev and stdvar 255
min and max 256
topk and bottomk 256
quantile 257
count_values 258

Table of Contents | vii

15. Binary Operators. 261
Working with Scalars 261

Arithmetic Operators 261
Trigonometric Operator 263
Comparison Operators 263

Vector Matching 265
One-to-One 266
Many-to-One and group_left 268
Many-to-Many and Logical Operators 271

Operator Precedence 275

16. Functions. 277
Changing Type 277

vector 278
scalar 278

Math 279
abs 279
ln, log2, and log10 279
exp 280
sqrt 280
ceil and floor 281
round 281
clamp, clamp_max, and clamp_min 281
sgn 282
Trigonometric Functions 282

Time and Date 283
time 283
minute, hour, day_of_week, day_of_month, day_of_year, days_in_month,

month, and year 284
timestamp 285

Labels 286
label_replace 286
label_join 286

Missing Series, absent, and absent_over_time 287
Sorting with sort and sort_desc 288
Histograms with histogram_quantile 288
Counters 289

rate 289
increase 291
irate 291
resets 292

Changing Gauges 293

viii | Table of Contents

changes 293
deriv 293
predict_linear 294
delta 294
idelta 294
holt_winters 295

Aggregation Over Time 295

17. Recording Rules. 297
Using Recording Rules 297
When to Use Recording Rules 300

Reducing Cardinality 300
Composing Range Vector Functions 302
Rules for APIs 302
How Not to Use Rules 303

Naming of Recording Rules 304

Part V. Alerting

18. Alerting. 311
Alerting Rules 312

for 314
Alert Labels 316
Annotations and Templates 318
What Are Good Alerts? 321

Configuring Alertmanagers in Prometheus 322
External Labels 323

19. Alertmanager. 325
Notification Pipeline 325
Configuration File 326

Routing Tree 327
Receivers 334
Inhibitions 344

Alertmanager Web Interface 345

Part VI. Deployment

20. Server-Side Security. 351
Security Features Provided by Prometheus 351

Table of Contents | ix

Enabling TLS 351
Advanced TLS Options 353
Enabling Basic Authentication 354

21. Putting It All Together. 357
Planning a Rollout 357
Growing Prometheus 359
Going Global with Federation 360
Long-Term Storage 363
Running Prometheus 365

Hardware 365
Configuration Management 367
Networks and Authentication 368

Planning for Failure 370
Alertmanager Clustering 372
Meta- and Cross-Monitoring 373

Managing Performance 374
Detecting a Problem 375
Finding Expensive Metrics and Targets 375
Reducing Load 376
Horizontal Sharding 377

Managing Change 379
Getting Help 379

Index. 381

x | Table of Contents

Preface

This book describes in detail how to use the Prometheus monitoring system to moni‐
tor, graph, and alert on the performance of your applications and infrastructure. This
book is intended for application developers, system administrators, and everyone in
between.

Expanding the Known
When it comes to monitoring, knowing that the systems you care about are turned
on is important, but that’s not where the real value is. The big wins are in understand‐
ing the performance of your systems.

By performance we don’t only mean the response time of and CPU used by each
request, but the broader meaning of performance. How many requests to the data‐
base are required for each customer order that is processed? Is it time to purchase
higher throughput networking equipment? How many machines are your cache
misses costing? Are enough of your users interacting with a complex feature in order
to justify its continued existence?

These are the sorts of questions that a metrics-based monitoring system can help
you answer, and beyond that help you dig into why the answer is what it is. We
see monitoring as getting insight from throughout your system, from high-level
overviews down to the nitty-gritty details that are useful for debugging. A full set of
monitoring tools for debugging and analysis includes not only metrics, but also logs,
traces, and profiling; but metrics should be your first port of call when you want to
answer systems-level questions.

Prometheus encourages you to have instrumentation liberally spread across your
systems, from applications all the way down to the bare metal. With instrumentation
you can observe how all your subsystems and components are interacting, and
convert unknowns into knowns.

xi

The Evolution of Prometheus
As Prometheus has crossed the 10-year mark, this second edition brings new devel‐
opments across all sections. Prometheus has continued to evolve and expand, offering
even more options for scraping, storing, and querying data. This progress is a result
of the dedicated community of users and contributors who use Prometheus across a
wide and growing range of industries and applications.

The second edition of this book provides coverage of the many new PromQL func‐
tions, service discovery providers, and Alertmanager receivers that have been added
since the first edition.

A new dedicated chapter covers server-side security features, such as TLS, that have
been added to Prometheus and some of the exporters.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xii | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, configuration files, etc.) is available for down‐
load at https://github.com/prometheus-up-and-running-2e/examples.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Prometheus: Up &
Running, Second Edition by Julien Pivotto and Brian Brazil (O’Reilly). Copyright
2023 Julien Pivotto, 978-1-098-13114-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

Preface | xiii

https://github.com/prometheus-up-and-running-2e/examples
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/prometheus-up-running-2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without all the work of the Prometheus
team, and the hundreds of contributors to Prometheus and its ecosystem. A special
thanks to Julius Volz, Richard Hartmann, Carl Bergquist, Andrew McMillan, and
Greg Stark for providing feedback on initial drafts of the first revision of this book.
Thanks to Brian Brazil, Bartłomiej Płotka, Carl Bergquist, TJ Hoplock, and Richard
Hartmann for their feedback on the second edition.

xiv | Preface

https://oreil.ly/prometheus-up-running-2e
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

PART I

Introduction

This section will introduce you to monitoring in general, and Prometheus more
specifically.

In Chapter 1 you will learn about the many different meanings of monitoring and
approaches to it, the metrics approach that Prometheus takes, and the architecture of
Prometheus.

In Chapter 2 you will get your hands dirty running a simple Prometheus setup that
scrapes machine metrics, evaluates queries, and sends alert notifications.

1 Kubernetes was the first member.

CHAPTER 1

What Is Prometheus?

Prometheus is an open source, metrics-based monitoring system. Of course, Prome‐
theus is far from the only one of those out there, so what makes it notable?

Prometheus does one thing and it does it well. It has a simple yet powerful data model
and a query language that lets you analyze how your applications and infrastructure
are performing. It does not try to solve problems outside of the metrics space, leaving
those to other more appropriate tools.

Since its beginnings with no more than a handful of developers working in Sound‐
Cloud in 2012, a community and ecosystem has grown around Prometheus. Prome‐
theus is primarily written in Go and licensed under the Apache 2.0 license. There are
hundreds of people who have contributed to the project itself, which is not controlled
by any one company. It is always hard to tell how many users an open source project
has, but we estimate that as of 2022, hundreds of thousands of organizations are
using Prometheus in production. In 2016 the Prometheus project became the second
member1 of the Cloud Native Computing Foundation (CNCF).

For instrumenting your own code, there are client libraries in all the popular
languages and runtimes, including Go, Java/JVM, C#/.Net, Python, Ruby, Node.js,
Haskell, Erlang, and Rust. Many popular applications are already instrumented with
Prometheus client libraries, like Kubernetes, Docker, Envoy, and Vault. For third-
party software that exposes metrics in a non-Prometheus format, there are hundreds
of integrations available. These are called exporters, and include HAProxy, MySQL,
PostgreSQL, Redis, JMX, SNMP, Consul, and Kafka. A friend of Brian’s even added
support for monitoring Minecraft servers, as he cares a lot about his frames per
second.

3

2 Next to the simple text format, a more standardized version, slightly different, called OpenMetrics has been
created out of the Prometheus text format.

A simple text format2 makes it easy to expose metrics to Prometheus. Other monitor‐
ing systems, both open source and commercial, have added support for this format.
This allows all of these monitoring systems to focus more on core features, rather
than each having to spend time duplicating effort to support every single piece of
software a user like you may wish to monitor.

The data model identifies each time series not just with a name, but also with an
unordered set of key-value pairs called labels. The PromQL query language allows
aggregation across any of these labels, so you can analyze not just per process but also
per datacenter and per service or by any other labels that you have defined. These can
be graphed in dashboard systems such as Grafana and Perses.

Alerts can be defined using the exact same PromQL query language that you use
for graphing. If you can graph it, you can alert on it. Labels make maintaining
alerts easier, as you can create a single alert covering all possible label values. In
some other monitoring systems you would have to individually create an alert per
machine/application. Relatedly, service discovery can automatically determine what
applications and machines should be scraped from sources such as Kubernetes, Con‐
sul, Amazon Elastic Compute Cloud (EC2), Azure, Google Compute Engine (GCE),
and OpenStack.

For all these features and benefits, Prometheus is efficient and simple to run. A
single Prometheus server can ingest millions of samples per second. It is a single,
statically linked binary with a configuration file. All components of Prometheus
can be run in containers, and they avoid doing anything fancy that would get in
the way of configuration management tools. It is designed to be integrated into the
infrastructure you already have and built on top of, not to be a management platform
itself.

Now that you have an overview of what Prometheus is, let’s step back for a minute
and look at what is meant by “monitoring” in order to provide some context. Follow‐
ing that, we will look at what the main components of Prometheus are, and what
Prometheus is not.

What Is Monitoring?
In secondary school, one of Brian’s teachers told him that if you were to ask 10 econ‐
omists what economics means, you’d get 11 answers. Monitoring has a similar lack
of consensus as to what exactly it means. When he tells others what he does, people
think his job entails everything from keeping an eye on temperature in factories, to

4 | Chapter 1: What Is Prometheus?

https://oreil.ly/f5uMZ
https://oreil.ly/YF-xW

3 Temperature monitoring of machines and datacenters is actually not uncommon. There are even a few users
using Prometheus to track the weather for fun.

employee monitoring where he is the one to find out who is accessing Facebook
during working hours, and even detecting intruders on networks.

Prometheus wasn’t built to do any of those things.3 It was built to aid software
developers and administrators in the operation of production computer systems,
such as the applications, tools, databases, and networks backing popular websites.

So what is monitoring in that context? Let’s narrow this sort of operational monitor‐
ing of computer systems down to four things:

Alerting
Knowing when things are going wrong is usually the most important thing that
you want monitoring for. You want the monitoring system to call in a human to
take a look.

Debugging
Now that you have called in a human, they need to investigate to determine the
root cause and ultimately resolve whatever the issue is.

Trending
Alerting and debugging usually happen on timescales on the order of minutes to
hours. While less urgent, the ability to see how your systems are being used and
changing over time is also useful. Trending can feed into design decisions and
processes such as capacity planning.

Plumbing
When all you have is a hammer, everything starts to look like a nail. At the end
of the day, all monitoring systems are data processing pipelines. Sometimes it
is more convenient to appropriate part of your monitoring system for another
purpose, rather than building a bespoke solution. This is not strictly monitoring,
but it is common in practice so we like to include it.

Depending on who you talk to and their background, they may consider only some
of these to be monitoring. This leads to many discussions about monitoring going
around in circles, leaving everyone frustrated. To help you understand where others
are coming from, we’re going to look at a small bit of the history of monitoring.

What Is Monitoring? | 5

4 Brian has fond memories of setting up MRTG in the early 2000s, writing scripts to report temperature and
network usage on my home computers.

A Brief and Incomplete History of Monitoring
Monitoring has seen a shift toward tools including Prometheus in the past few years.
For a long time, the dominant solution has been some combination of Nagios and
Graphite or their variants.

When we say Nagios, we are including any software within the same broad family,
such as Icinga, Zmon, and Sensu. They work primarily by regularly executing scripts
called checks. If a check fails by returning a nonzero exit code, an alert is generated.
Nagios was initially started by Ethan Galstad in 1996 as an MS-DOS application used
to perform pings. It was first released as NetSaint in 1999, and renamed Nagios in
2002.

To talk about the history of Graphite, we need to go back to 1994. Tobias Oetiker
created a Perl script that became Multi Router Traffic Grapher, or MRTG 1.0, in 1995.
As the name indicates, it was mainly used for network monitoring via the Simple
Network Management Protocol (SNMP). It could also obtain metrics by executing
scripts.4 The year 1997 brought big changes with a move of some code to C, and the
creation of the Round Robin Database (RRD), which was used to store metric data.
This brought notable performance improvements, and RRD was the basis for other
tools, including Smokeping and Graphite.

Started in 2006, Graphite uses Whisper for metrics storage, which has a similar
design to RRD. Graphite does not collect data itself, rather it is sent in by collection
tools such as collectd and StatsD, which were created in 2005 and 2010, respectively.

The key takeaway here is that graphing and alerting were once completely separate
concerns performed by different tools. You could write a check script to evaluate a
query in Graphite and generate alerts on that basis, but most checks tended to be on
unexpected states such as a process not running.

Another holdover from this era is the relatively manual approach to administering
computer services. Services were deployed on individual machines and lovingly
cared for by system administrators. Alerts that might potentially indicate a problem
were jumped upon by devoted engineers. As cloud and cloud native technologies
such as EC2, Docker, and Kubernetes have come to prominence, treating individual
machines and services like pets with each getting individual attention does not scale.
Rather, they tend to be looked at more as cattle and administered and monitored
as a group. In the same way that the industry has moved from doing management
by hand, to tools like Chef and Ansible, to now starting to use technologies like
Kubernetes, monitoring also needs to make a similar transition. This means moving

6 | Chapter 1: What Is Prometheus?

5 OTel is an informal name for OpenTelemetry.
6 At the time of writing, developers at a Prometheus developer summit have decided that the Prometheus

server will support the OTel protocol natively in the future, but there is no firm decision about when and how
this will happen.

from checks on individual processes on individual machines to monitoring based on
service health as a whole.

Moving to a more recent time, OpenTelemetry is born from two other open
source projects, OpenCensus and OpenTracing. OTel5 is a specification and a set
of components that aim to offer built-in telemetry for projects. Its metrics component
is compatible with Prometheus with the addition of the OpenTelemetry collector,6

which is responsible for collecting and providing metrics to your Prometheus server.

You may have noticed that we didn’t mention logging, tracing, and profiling. Histori‐
cally, logs have been used as something that you use tail, grep, and awk on by hand.
You might have had an analysis tool such as AWStats to produce reports hourly or
daily. In more recent years, logs have also been used as a significant part of monitor‐
ing, such as with the Elasticsearch, Logstash, and Kibana (ELK) and OpenSearch
stack. Tracing and profiling are generally done with their own software stack: Zipkin
and Jaeger are made for tracing, while Parca and Pyroscope deal with continuous
profiling.

Now that we have looked a bit at graphing and alerting, let’s look at how metrics and
logs fit into the landscape. Are there more categories of monitoring than those two?

Categories of Monitoring
At the end of the day, most monitoring is about the same thing: events. Events can be
almost anything, including:

• Receiving an HTTP request•
• Sending an HTTP 400 response•
• Entering a function•
• Reaching the else of an if statement•
• Leaving a function•
• A user logging in•
• Writing data to disk•
• Reading data from the network•
• Requesting more memory from the kernel•

What Is Monitoring? | 7

7 To be compared to Go runtime’s 100Hz frequency or even 10,000Hz in Chromium.

All events also have context. An HTTP request will have the IP address it is coming
from and going to, the URL being requested, the cookies that are set, and the user
who made the request. An HTTP response will have how long the response took, the
HTTP status code, and the length of the response body. Events involving functions
have the call stack of the functions above them, and whatever triggered this part of
the stack, such as an HTTP request.

Having all the context for all the events would be great for debugging and under‐
standing how your systems are performing in both technical and business terms,
but that amount of data is not practical to process and store. Thus, we see roughly
four ways to approach reducing that volume of data to something workable, namely
profiling, tracing, logging, and metrics.

Profiling
Profiling takes the approach that you can’t have all the context for all of the events all
of the time, but you can have some of the context for limited periods of time.

Tcpdump is one example of a profiling tool. It allows you to record network traffic
based on a specified filter. It’s an essential debugging tool, but you can’t really turn it
on all the time as you will run out of disk space.

Debug builds of binaries that track profiling data are another example. They provide
a plethora of useful information, but the performance impact of gathering all that
information, such as timings of every function call, means that it is not generally
practical to run it in production on an ongoing basis.

In the Linux kernel, enhanced Berkeley Packet Filters (eBPF) allow detailed profiling
of kernel events from filesystem operations to network oddities. These provide access
to a level of insight that was not generally available previously. eBPF comes with other
advantages, such as portability and safety. We’d recommend reading Brendan Gregg’s
writings on the subject.

Profiling is largely for tactical debugging. If it is being used on a longer-term basis,
then the data volume must be cut down in order to fit into one of the other categories
of monitoring, or you’d need to move to continuous profiling, which enables the
collection over longer runs.

What’s new with continuous profiling is that in order to cut down the data volume
and keep a relatively low overhead, it reduces the profiling frequency. One of the
emerging continuous profiling tools, the eBPF-based Parca Agent, uses a 19Hz fre‐
quency.7 As a consequence, it tries to get statistically significant data over minutes
rather than seconds, while still providing the data required to understand how the

8 | Chapter 1: What Is Prometheus?

https://oreil.ly/n15mM
https://oreil.ly/n15mM
https://parca.dev

CPU time is spent in an infrastructure, and helping to improve application efficiency
where it’s needed.

Tracing
Tracing doesn’t typically look at all events, rather it takes some proportion of events
such as one in a hundred that pass through some functions of interest. Tracing will
note the functions in the stack trace of the points of interest, and often also how long
each of these functions took to execute. From this you can get an idea of where your
program is spending time and which code paths are most contributing to latency.

Rather than doing snapshots of stack traces at points of interest, some tracing systems
trace and record timings of every function call below the function of interest. For
example, one in a hundred user HTTP requests might be sampled, and for those
requests you could see how much time was spent talking to backends such as data‐
bases and caches. This allows you to see how timings differ based on factors like
cache hits versus cache misses.

Distributed tracing takes this a step further. It makes tracing work across processes
by attaching unique IDs to requests that are passed from one process to another in
remote procedure calls (RPCs) in addition to whether this request is one that should
be traced. The traces from different processes and machines can be stitched back
together based on the request ID. This is a vital tool for debugging distributed micro‐
services architectures. Technologies in this space include OpenZipkin and Jaeger.

For tracing, it is the sampling that keeps the data volumes and instrumentation
performance impact within reason.

Logging
Logging looks at a limited set of events and records some of the context for each of
these events. For example, it may look at all incoming HTTP requests, or all outgoing
database calls. To avoid consuming too many resources, as a rule of thumb you are
limited to somewhere around a hundred fields per log entry. Beyond that, bandwidth
and storage space tend to become a concern.

For example, for a server handling 1,000 requests per second, a log entry with 100
fields each taking 10 bytes works out as 1 megabyte per second. That’s a nontrivial
proportion of a 100 Mbit network card, and 84 GB of storage per day just for logging.

A big benefit of logging is that there is (usually) no sampling of events, so even
though there is a limit on the number of fields, it is practical to determine how slow
requests are affecting one particular user talking to one particular API endpoint.

What Is Monitoring? | 9

Just as monitoring means different things to different people, logging also means
different things depending on who you ask, which can cause confusion. Different
types of logging have different uses, durability, and retention requirements. As we see
it, there are four general and somewhat overlapping categories:

Transaction logs
These are the critical business records that you must keep safe at all costs, likely
forever. Anything touching on money or that is used for critical user-facing
features tends to be in this category.

Request logs
If you are tracking every HTTP request, or every database call, that’s a request
log. They may be processed in order to implement user facing features, or just for
internal optimizations. You don’t generally want to lose them, but it’s not the end
of the world if some of them go missing.

Application logs
Not all logs are about requests; some are about the process itself. Startup
messages, background maintenance tasks, and other process-level log lines are
typical. These logs are often read directly by a human, so you should try to avoid
having more than a few per minute in normal operations.

Debug logs
Debug logs tend to be very detailed and thus expensive to create and store. They
are often only used in very narrow debugging situations, and are trending toward
profiling due to their data volume. Reliability and retention requirements tend to
be low, and debug logs may not even leave the machine they are generated on.

Treating the differing types of logs all in the same way can put you in the worst of
all worlds, where you have the data volume of debug logs combined with the extreme
reliability requirements of transaction logs. Thus as your system grows, you should
plan on splitting out the debug logs so that they can be handled separately.

Examples of logging systems include the ELK stack, OpenSearch, Grafana Loki, and
Graylog.

Metrics
Metrics largely ignore context, instead tracking aggregations over time of different
types of events. To keep resource usage sane, the amount of different numbers being
tracked needs to be limited: 10,000 per process is a reasonable upper bound for you
to keep in mind.

10 | Chapter 1: What Is Prometheus?

8 Email addresses also tend to be personally identifiable information (PII), which bring with them compliance
and privacy concerns that are best avoided in monitoring.

Examples of the sort of metrics you might have would be the number of times you
received HTTP requests, how much time was spent handling requests, and how many
requests are currently in progress. By excluding any information about context, the
data volumes and processing required are kept reasonable.

That is not to say, though, that context is always ignored. For an HTTP request you
could decide to have a metric for each URL path. But the 10,000 metric guideline has
to be kept in mind, as each distinct path now counts as a metric. Using context such
as a user’s email address would be unwise, as they have an unbounded cardinality.8

You can use metrics to track the latency and data volumes handled by each of
the subsystems in your applications, making it easier to determine the cause of a
slowdown. Logs cannot record that many fields, but once you know which subsystem
is to blame, logs can help you figure out which exact user requests are involved.

This is where the trade-off between logs and metrics becomes most apparent. Metrics
allow you to collect information about events from all over your process, but with
generally no more than one or two fields of context with bounded cardinality. Logs
allow you to collect information about all of one type of event, but can only track a
hundred fields of context with unbounded cardinality. Cardinality and the limits it
places on metrics is important to understand, and we explore it in later chapters.

As a metrics-based monitoring system, Prometheus is designed to track overall
system health, behavior, and performance rather than individual events. Put another
way, Prometheus cares that there were 15 requests in the last minute that took 4
seconds to handle, resulted in 40 database calls, 17 cache hits, and 2 purchases by
customers. The cost and code paths of the individual calls would be the concern of
profiling or logging.

Now that you have an understanding of where Prometheus fits in the overall moni‐
toring space, let’s look at the various components of Prometheus.

Prometheus Architecture
Figure 1-1 shows the overall architecture of Prometheus. Prometheus discovers tar‐
gets to scrape from service discovery. These can be your own instrumented applica‐
tions or third-party applications you can scrape via an exporter. The scraped data
is stored, and you can use it in dashboards using PromQL or send alerts to the
Alertmanager, which will convert them into pages, emails, and other notifications.

Prometheus Architecture | 11

Figure 1-1. The Prometheus architecture

Client Libraries
Metrics do not typically magically spring forth from applications; someone has to
add the instrumentation that produces them. This is where client libraries come in.
With usually only two or three lines of code, you can both define a metric and add
your desired instrumentation inline in code you control. This is referred to as direct
instrumentation.

Client libraries are available for all the major languages and runtimes. The Prome‐
theus project provides official client libraries in Go, Python, Java/JVM, Ruby, and
Rust. There are also a variety of third-party client libraries, such as for C#/.Net,
Node.js, Haskell, and Erlang.

Official Versus Unofficial
Don’t be put off by integrations such as client libraries being unofficial or third party.
With hundreds of applications and systems that you may wish to integrate with, it is
not possible for the Prometheus project team to have the time and expertise to create
and maintain them all. Thus the vast majority of integrations in the ecosystem are
third party. In order to keep things reasonably consistent and working as you would
expect, guidelines are available on how to write integrations.

12 | Chapter 1: What Is Prometheus?

9 The term ConstMetric is colloquial, and comes from the Go client library’s MustNewConstMetric function
used to produce metrics by exporters written in Go.

Client libraries take care of all the nitty-gritty details such as thread safety, bookkeep‐
ing, and producing the Prometheus text and/or OpenMetrics exposition format in
response to HTTP requests. As metrics-based monitoring does not track individual
events, client library memory usage does not increase with the more events you have.
Rather, memory is related to the number of metrics you have.

If one of the library dependencies of your application has Prometheus instrumenta‐
tion, it will automatically be picked up. Thus by instrumenting a key library such as
your RPC client, you can get instrumentation for it in all of your applications.

Some metrics, such as CPU usage and garbage collection statistics, are typically
provided out of the box by client libraries, depending on the library and runtime
environment.

Client libraries are not restricted to outputting metrics in the Prometheus and Open‐
Metrics text formats. Prometheus is an open ecosystem, and the same APIs used to
feed the text format generation can be used to produce metrics in other formats or to
feed into other instrumentation systems. Similarly, it is possible to take metrics from
other instrumentation systems and plumb them into a Prometheus client library, if
you haven’t quite converted everything to Prometheus instrumentation yet.

Exporters
Not all code you run is code that you can control or even have access to, and thus
adding direct instrumentation isn’t really an option. For example, it is unlikely that
operating system kernels will start outputting Prometheus-formatted metrics over
HTTP anytime soon.

Such software often has some interface through which you can access metrics. This
might be an ad hoc format requiring custom parsing and handling, such as is
required for many Linux metrics, or a well-established standard such as SNMP.

An exporter is a piece of software that you deploy right beside the application you
want to obtain metrics from. It takes in requests from Prometheus, gathers the
required data from the application, transforms it into the correct format, and finally
returns it in a response to Prometheus. You can think of an exporter as a small
one-to-one proxy, converting data between the metrics interface of an application and
the Prometheus exposition format.

Unlike the direct instrumentation you would use for code you control, exporters use a
different style of instrumentation known as custom collectors or ConstMetrics.9

Prometheus Architecture | 13

10 The EC2 Name tag is the display name of an EC2 instance in the EC2 web console.

The good news is that given the size of the Prometheus community, the exporter you
need probably already exists and can be used with little effort on your part. If the
exporter is missing a metric you are interested in, you can always send a pull request
to improve it, making it better for the next person to use it.

Service Discovery
Once you have all your applications instrumented and your exporters running,
Prometheus needs to know where they are. This is so Prometheus will know what
to monitor, and be able to notice if something it is meant to be monitoring is not
responding. With dynamic environments you cannot simply provide a list of applica‐
tions and exporters once, as it will get out of date. This is where service discovery
comes in.

You probably already have some database of your machines, applications, and what
they do. It might be inside Chef ’s database, an inventory file for Ansible, based on
tags on your EC2 instance, in labels and annotations in Kubernetes, or maybe just
sitting in your documentation wiki.

Prometheus has integrations with many common service discovery mechanisms,
such as Kubernetes, EC2, and Consul. There is also a generic integration for those
whose setup is a little off the beaten path (see “File” on page 142 and “HTTP” on page
145).

This still leaves a problem, though. Just because Prometheus has a list of machines
and services doesn’t mean we know how they fit into your architecture. For exam‐
ple, you might be using the EC2 Name tag10 to indicate what application runs on a
machine, whereas others might use a tag called app.

As every organization does it slightly differently, Prometheus allows you to configure
how metadata from service discovery is mapped to monitoring targets and their
labels using relabeling.

Scraping
Service discovery and relabeling give us a list of targets to be monitored. Now
Prometheus needs to fetch the metrics. Prometheus does this by sending an HTTP
request called a scrape. The response to the scrape is parsed and ingested into storage.
Several useful metrics are also added in, such as if the scrape succeeded and how long
it took. Scrapes happen regularly; usually you would configure it to happen every 10
to 60 seconds for each target.

14 | Chapter 1: What Is Prometheus?

Pull Versus Push
Prometheus is a pull-based system. It decides when and what to scrape, based on
its configuration. There are also push-based systems, where the monitoring target
decides if it is going to be monitored and how often.

There is vigorous debate online about the two designs, which often bears similarities
to debates around Vim versus EMACS. Suffice to say both have pros and cons, and
overall it doesn’t matter much.

As a Prometheus user you should understand that pull is ingrained in the core of
Prometheus, and attempting to make it do push instead is at best unwise.

Storage
Prometheus stores data locally in a custom database. Distributed systems are chal‐
lenging to make reliable, so Prometheus does not attempt to do any form of cluster‐
ing. In addition to reliability, this makes Prometheus easier to run.

Over the years, storage has gone through a number of redesigns, with the storage
system in Prometheus 2.0 being the third iteration. The storage system can handle
ingesting millions of samples per second, making it possible to monitor thousands
of machines with a single Prometheus server. The compression algorithm used can
achieve 1.3 bytes per sample on real-world data. An SSD is recommended, but not
strictly required.

Dashboards
Prometheus has a number of HTTP APIs that allow you to both request raw data
and evaluate PromQL queries. These can be used to produce graphs and dashboards.
Out of the box, Prometheus provides the expression browser. It uses these APIs and is
suitable for ad hoc querying and data exploration, but it is not a general dashboard
system.

It is recommended that you use Grafana for dashboards. It has a wide variety of
features, including official support for Prometheus as a data source. It can produce a
wide variety of dashboards, such as the one in Figure 1-2. Grafana supports talking to
multiple Prometheus servers, even within a single dashboard panel.

Prometheus Architecture | 15

Figure 1-2. A Grafana dashboard

Recording Rules and Alerts
Although PromQL and the storage engine are powerful and efficient, aggregating
metrics from thousands of machines on the fly every time you render a graph can get
a little laggy. Recording rules allow PromQL expressions to be evaluated on a regular
basis and their results ingested into the storage engine.

Alerting rules are another form of recording rules. They also evaluate PromQL
expressions regularly, and any results from those expressions become alerts. Alerts
are sent to the Alertmanager.

Alert Management
The Alertmanager receives alerts from Prometheus servers and turns them into
notifications. Notifications can include email, chat applications such as Slack, and
services such as PagerDuty.

16 | Chapter 1: What Is Prometheus?

https://oreil.ly/ytkNa

11 A page is a notification to an on call engineer that they are expected to promptly investigate or deal with.
While you may receive a page via a traditional radio pager, these days it more likely comes to your mobile
phone in the form of an SMS, notification, or phone call. A pager storm is when you receive a string of pages
in rapid succession.

12 However, modern machines can hold a lot of data locally, so a separate clustered storage system may not be
necessary for you.

The Alertmanager does more than blindly turn alerts into notifications on a one-to-
one basis. Related alerts can be aggregated into one notification, throttled to reduce
pager storms,11 and different routing and notification outputs can be configured for
each of your different teams. Alerts can also be silenced, perhaps to snooze an issue
you are already aware of in advance when you know maintenance is scheduled.

The Alertmanager’s role stops at sending notifications; to manage human responses
to incidents you should use services such as PagerDuty and ticketing systems.

Alerts and their thresholds are configured in Prometheus, not in
the Alertmanager.

Long-Term Storage
Since Prometheus stores data only on the local machine, you are limited by how
much disk space you can fit on that machine.12 While you usually care only about
the most recent day or so worth of data, for long-term capacity planning, a longer
retention period is desirable.

Prometheus does not offer a clustered storage solution to store data across multiple
machines, but there are remote read and write APIs that allow other systems to hook
in and take on this role. These allow PromQL queries to be run transparently against
both local and remote data.

What Prometheus Is Not
Now that you have an idea of where Prometheus fits in the broader monitoring
landscape and what its major components are, let’s look at some use cases for which
Prometheus is not a particularly good choice.

As a metrics-based system, Prometheus is not suitable for storing event logs or
individual events. Nor is it the best choice for high-cardinality data, such as email
addresses or usernames.

What Prometheus Is Not | 17

Prometheus is designed for operational monitoring, where small inaccuracies and
race conditions due to factors like kernel scheduling and failed scrapes are a fact of
life. Prometheus makes trade-offs and prefers giving you data that is 99.9% correct
over your monitoring breaking while waiting for perfect data. Thus in applications
involving money or billing, Prometheus should be used with caution.

In the next chapter we will show you how to run Prometheus and do some basic
monitoring.

18 | Chapter 1: What Is Prometheus?

CHAPTER 2

Getting Started with Prometheus

In this chapter you will set up and run Prometheus, the Node Exporter, and the
Alertmanager. This simple example will monitor a single machine and give you a
small taste of what a full Prometheus deployment looks like. Later chapters will look
at each aspect of this setup in detail.

This chapter requires a machine running any reasonable, modern version of Linux.
Either bare metal or a virtual machine will do. You will use the command line and
access services on the machine using a web browser. For simplicity we will assume
that everything is running on localhost; if this is not the case, adjust the URLs as
appropriate.

A basic setup similar to the one used in this chapter is publicly
available on the Prometheus demo site.

Running Prometheus
Prebuilt versions of Prometheus and other components are available from the Prom‐
etheus download page. Go to that page and download the latest version of Prome‐
theus for the Linux OS with Arch amd64; the download page will look something like
Figure 2-1.

19

https://oreil.ly/KHxZC
https://oreil.ly/e_S6d
https://oreil.ly/e_S6d

1 This uses a glob for the version in case you are using a different version than we are. The star will match any
text.

Figure 2-1. Part of the Prometheus download page; the Linux/amd64 version is in the
middle

Here we are using Prometheus 2.37.0, so prometheus-2.37.0.linux-amd64.tar.gz is the
filename.

Long-Term Support
Minor releases of Prometheus are scheduled every six weeks. Upgrading at such
a cadence can be challenging, therefore some versions are defined as Long Term
Support (LTS) releases. LTS releases are supported for a longer period of time than
regular releases: instead of six weeks, LTS releases are updated with bug fixes and
security fixes for one year. You can find the complete schedule at the Prometheus
website.

Prometheus upgrades are intended to be safe between minor ver‐
sions, such as from 2.0.0 to 2.0.1, 2.1.0, or 2.3.1. Even so, as with all
software it is wise to read through the changelog.
Any 2.x.x version of Prometheus should suffice for this chapter.

Extract the tarball on the command line and change into its directory:1

hostname $ tar -xzf prometheus-*.linux-amd64.tar.gz
hostname $ cd prometheus-*.linux-amd64/

20 | Chapter 2: Getting Started with Prometheus

https://oreil.ly/ZxU-S
https://oreil.ly/ZxU-S

2 You may wonder why Prometheus doesn’t use JSON. JSON has its own issues, such as being picky about
commas, and unlike YAML, does not support comments. As JSON is a subset of YAML, you can use JSON
instead if you really want to.

Now change the file called prometheus.yml to contain the following text:

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090

The Prometheus ecosystem uses YAML (YAML Ain’t Markup Lan‐
guage) for its configuration files, as it is both approachable to
humans and can be processed by tools. The format is sensitive to
whitespace though, so make sure to copy examples exactly and use
spaces rather than tabs.2

By default Prometheus runs on TCP port 9090, so this configuration instructs
to scrape itself every 10 seconds. You can now run the Prometheus binary
with ./prometheus:

hostname $./prometheus
level=info ... msg="No time or size retention was set so using the default
 time retention" duration=15d
level=info ... msg="Starting Prometheus" version="(version=2.37.0, branch=HEAD,
 revision=b41e0750abf5cc18d8233161560731de05199330)"
level=info ... build_context="(go=go1.18.4, user=root@0ebb6827e27f,
 date=20220714-15:13:18)"
level=info ... host_details="(Linux 5.18.12 #1-NixOS SMP PREEMPT..."
level=info ... fd_limits="(soft=1024, hard=1048576)"
level=info ... msg="Start listening for connections" address=0.0.0.0:9090
level=info ... msg="Starting TSDB ..."
level=info ... msg="TSDB started"
level=info ... component=web msg="TLS is disabled." http2=false
level=info ... msg="Loading configuration file" filename=prometheus.yml
level=info ... msg="Server is ready to receive web requests."

As you can see, Prometheus logs various useful information at startup, including
its exact version and details of the machine it is running on. Now you can access
the Prometheus UI in your browser at http://localhost:9090/, which will look like
Figure 2-2.

Running Prometheus | 21

Figure 2-2. The Prometheus expression browser

This is the expression browser from which you can run PromQL queries. There are
also several other pages in the UI to help you understand what Prometheus is doing,
such as the Targets page under the Status tab, which looks like Figure 2-3.

Figure 2-3. The target status page

On this page there is only a single Prometheus server in the UP state, meaning that
the last scrape was successful. If there had been a problem with the last scrape, there
would be a message in the Error field.

22 | Chapter 2: Getting Started with Prometheus

Another page you should look at is the /metrics page of Prometheus itself, as some‐
what unsurprisingly Prometheus is itself instrumented with Prometheus metrics.
These are metrics available on http://localhost:9090/metrics and are human readable,
as you can see in Figure 2-4.

Figure 2-4. The first part of Prometheus’s /metrics page

Note that there are not just metrics from the Prometheus code itself, but also about
the Go runtime and the process.

Using the Expression Browser
The expression browser is useful for running ad hoc queries, developing PromQL
expressions, and debugging both PromQL and the data inside Prometheus.

To start, make sure you are in the Console view, enter the expression up, and click
Execute.

As Figure 2-5 shows, there is a single result with the value 1 and the name
up{instance="localhost:9090",job="prometheus"}. up is a special metric added
by Prometheus when it performs a scrape; 1 indicates that the scrape was successful.
The instance is a label, indicating the target that was scraped. In this case it indicates
it is the Prometheus server itself.

Using the Expression Browser | 23

Figure 2-5. The result of up in the expression browser

The job label here comes from the job_name in the prometheus.yml. Prometheus does
not magically know that it is scraping a Prometheus server and thus that it should
use a job label with the value prometheus. Rather, this is a convention that requires
configuration by the user. The job label indicates the type of application.

Next, you should evaluate process_resident_memory_bytes, as shown in Figure 2-6.

Figure 2-6. The result of process_resident_memory_bytes in the expression browser

24 | Chapter 2: Getting Started with Prometheus

3 You can get the number in MB by running a query like process_resident_memory_bytes / (1024*1024).
4 This is the same logic behind why dates and times are generally best stored in UTC, and time zone transfor‐

mations only applied just before they are shown to a human.

Our Prometheus is using about 73 MB of memory. You may wonder why this metric
is exposed using bytes rather than megabytes or gigabytes, which may be more read‐
able. The answer is that what is more readable depends a lot on context, and even the
same binary in different environments may have values that differ by many orders of
magnitude.3 An internal RPC may take microseconds, while polling a long-running
process might take hours or even days. Thus the convention in Prometheus is to use
base units such as bytes and seconds, and leave pretty printing it to frontend tools like
Grafana.4

Knowing the current memory usage is great and all, but what would be really nice
would be to see how it has changed over time. To do so, click Graph to switch to the
graph view, as shown in Figure 2-7.

Figure 2-7. A graph of process_resident_memory_bytes in the expression browser

Using the Expression Browser | 25

Metrics like process_resident_memory_bytes are called gauges. A gauge’s current
absolute value is what is important to you. There is a second core type of metric
called the counter. Counters track how many events have happened, or the total
size of all the events. Let’s look at a counter by graphing prometheus_tsdb_head_
samples_appended_total, the number of samples Prometheus has ingested, which
will look like Figure 2-8.

Figure 2-8. A graph of prometheus_tsdb_head_samples_appended_total in the
expression browser

Counters are always increasing. This creates nice up-and-to-the-right graphs, but the
values of counters are not much use on their own. What you really want to know
is how fast the counter is increasing, which is where the rate function comes in.
The rate function calculates how fast a counter is increasing per second. Adjust your
expression to rate(prometheus_tsdb_head_samples_appended_total[1m]), which
will calculate how many samples Prometheus is ingesting per second averaged over
one minute and produce a result such as that shown in Figure 2-9.

26 | Chapter 2: Getting Started with Prometheus

5 This can lead to rates on integers returning noninteger results, but the results are correct on average. For
more information, see “rate” on page 289.

6 Windows users should use the Windows Exporter rather than the Node Exporter.

Figure 2-9. A graph of rate(prometheus_tsdb_head_samples_appended_total[1m])
in the expression browser

You can see now that Prometheus is ingesting 28 or so samples per second on
average. The rate function automatically handles counters resetting due to processes
restarting and samples not being exactly aligned.5

Running the Node Exporter
The Node Exporter exposes kernel- and machine-level metrics on Unix systems, such
as Linux.6 It provides all the standard metrics such as CPU, memory, disk space,
disk I/O, and network bandwidth. In addition it provides myriad additional metrics
exposed by the kernel, from load average to motherboard temperature.

Running the Node Exporter | 27

https://oreil.ly/dB6ZZ

What the Node Exporter does not expose is metrics about individual processes, nor
proxy metrics from other exporters or applications. In the Prometheus architecture
you monitor applications and services directly, rather than entwining them into the
machine metrics.

You can download a prebuilt version of the Node Exporter from the Prometheus
download page. Go to that page and download the latest version of Node Exporter for
the Linux OS with Arch amd64.

Again, the tarball will need to be extracted, but no configuration file is required, so it
can be run directly:

hostname $ tar -xzf node_exporter-*.linux-amd64.tar.gz
hostname $ cd node_exporter-*.linux-amd64/
hostname $./node_exporter
level=info ... msg="Starting node_exporter" version="(version=1.3.1,
 branch=HEAD, revision=a2321e7b940ddcff26873612bccdf7cd4c42b6b6)"
level=info ... msg="Build context" build_context="(go=go1.17.3,
 user=root@243aafa5525c, date=20211205-11:09:49)"
level=info ... msg="Enabled collectors"
level=info ... collector=arp
level=info ... collector=bcache
level=info ... collector=bonding
...
various other collectors
...
level=info ... msg="Listening on" address=:9100
level=info ... msg="TLS is disabled." http2=false

You can now access the Node Exporter in your browser at http://localhost:9100/ and
visit its /metrics endpoint.

To get Prometheus to monitor the Node Exporter, you need to update the prome‐
theus.yml by adding an additional scrape config:

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 - job_name: node
 static_configs:
 - targets:
 - localhost:9100

The Node Exporter scrape job.

28 | Chapter 2: Getting Started with Prometheus

https://oreil.ly/Bc4js
https://oreil.ly/Bc4js

7 It is possible to get Prometheus to reload the configuration file without restarting by using a SIGHUP.

Restart Prometheus to pick up the new configuration by using Ctrl-C to shut it down
and then start it again.7 If you look at the Targets page, you should now see two
targets, both in the UP state, as shown in Figure 2-10.

Figure 2-10. The target status page with Node Exporter

If you now evaluate up in the Console view of the expression browser, you will see
two entries, as shown in Figure 2-11.

Figure 2-11. There are now two results for up

Running the Node Exporter | 29

As you add more jobs and scrape configs, it is rare that you will want to look
at the same metric from different jobs at the same time. The memory usage of a
Prometheus and a Node Exporter are very different, for example, and extraneous
data makes debugging and investigation harder. You can graph the memory usage
of just the Node Exporters with process_resident_memory_bytes{job="node"}. The
job="node" is called a label matcher, and it restricts the metrics that are returned, as
you can see in Figure 2-12.

Figure 2-12. A graph of the resident memory of just the Node Exporter

The process_resident_memory_bytes here is the memory used by the Node
Exporter process itself (as is hinted by the process prefix) and not the machine
as a whole. Knowing the resource usage of the Node Exporter is handy and all, but it
is not why you run it.

As a final example, evaluate rate(node_network_receive_bytes_total[1m]) in
Graph view to produce a graph like the one shown in Figure 2-13.

30 | Chapter 2: Getting Started with Prometheus

Figure 2-13. A graph of the network traffic received on several interfaces

node_network_receive_bytes_total is a counter for how many bytes have been
received by network interfaces. The Node Exporter automatically picked up all the
network interfaces, and they can be worked with as a group in PromQL. This is useful
for alerting, as labels avoid the need to exhaustively list every single thing you wish to
alert on.

Alerting
There are two parts to alerting. First, adding alerting rules to Prometheus, defining
the logic of what constitutes an alert. Second, the Alertmanager converts firing alerts
into notifications, such as emails, pages, and chat messages.

Alerting | 31

8 Another common error is context deadline exceeded. This indicates a timeout, usually due either to the other
end being too slow or the network dropping packets.

Let’s start off by creating a condition that you might want to alert on. Stop the Node
Exporter with Ctrl-C. After the next scrape, the Targets page will show the Node
Exporter in the DOWN state, as shown in Figure 2-14, with the error connection refused,
as nothing is listening on the TCP port and the HTTP request is being rejected.8

Prometheus does not include failed scrapes in its application logs,
as a failed scrape is an expected occurrence that does not indi‐
cate any problems in Prometheus itself. Aside from the Targets
page, scrape errors are also available in the debug logs of Prome‐
theus, which you can enable by passing the --log.level debug
command-line flag.

Figure 2-14. The target status page showing the Node Exporter as down

Manually looking at the Targets page for down instances is not a good use of your
time. Luckily, the up metric has your back, and when evaluating up in the Console
view of the expression browser, you will see that it now has a value of 0 for the Node
Exporter, as shown in Figure 2-15.

32 | Chapter 2: Getting Started with Prometheus

9 There is also a bool mode that does not filter, covered in the section “bool modifier” on page 264.

Figure 2-15. up is now 0 for the Node Exporter

For alerting rules, you need a PromQL expression that returns only the results that
you wish to alert on. In this case, that is easy to do using the == operator. == will
filter9 away any time series whose values don’t match. If you evaluate up == 0 in the
expression browser, only the down instance is returned, as Figure 2-16 shows.

Figure 2-16. Only up metrics with the value 0 are returned

Alerting | 33

Next, you need to add this expression in an alerting rule in Prometheus. We are also
going to jump ahead a little and have you tell Prometheus which Alertmanager it will
be talking to. You will need to expand your prometheus.yml to have the content from
Example 2-1.

Example 2-1. prometheus.yml scraping two targets, loading a rule file, and talking to an
Alertmanager

global:
 scrape_interval: 10s
 evaluation_interval: 10s
rule_files:
 - rules.yml
alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - localhost:9093
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 - job_name: node
 static_configs:
 - targets:
 - localhost:9100

The rule files configuration.

The alerting configuration.

The scrape jobs.

Next, create a new rules.yml file with the contents from Example 2-2, and then restart
Prometheus.

Example 2-2. rules.yml with a single alerting rule

groups:
 - name: example
 rules:
 - alert: InstanceDown
 expr: up == 0
 for: 1m

34 | Chapter 2: Getting Started with Prometheus

10 Usually a for of at least 5 minutes is recommended to reduce noise and mitigate various races inherent in
monitoring. We are only using a minute here, so you don’t have to wait too long when trying this out.

11 Given how email security has evolved over the past decade, this is not a good assumption, but your ISP will
probably have one.

The InstanceDown alert will be evaluated every 10 seconds in accordance with the
evaluation_interval. If a series is continuously returned for at least a minute10 (the
for), then the alert will be considered to be firing. Until the required minute is up,
the alert will be in a pending state. On the Alerts page you can click this alert and see
more detail, including its labels, as shown in Figure 2-17.

Figure 2-17. A firing alert on the Alerts page

Now that you have a firing alert, you need an Alertmanager to do something with it.
Download the latest version of the Alertmanager for the Linux OS with Arch amd64.
Untar the Alertmanager and cd into its directory:

hostname $ tar -xzf alertmanager-*.linux-amd64.tar.gz
hostname $ cd alertmanager-*.linux-amd64/

You now need a configuration for the Alertmanager. There are a variety of ways that
the Alertmanager can notify you, but most of the ones that work out of the box
use commercial providers and have setup instructions that tend to change over time.
Thus we are going to presume that you have an open SMTP smarthost available.11

You should base your alertmanager.yml on Example 2-3, adjusting smtp_smarthost,
smtp_from, and to to match your setup and email address.

Alerting | 35

https://oreil.ly/Bc4js

Example 2-3. alertmanager.yml sending all alerts to email

global:
 smtp_smarthost: 'localhost:25'
 smtp_from: 'yourprometheus@example.org'
route:
 receiver: example-email
 group_by: [alertname]
receivers:
 - name: example-email
 email_configs:
 - to: 'youraddress@example.org'

The email address that will be used as the From field.

The email address the emails will be sent to.

You can now start the Alertmanager with ./alertmanager:

hostname $./alertmanager
level=info ... msg="Starting Alertmanager" version="(version=0.24.0,
 branch=HEAD, revision=f484b17fa3c583ed1b2c8bbcec20ba1db2aa5f11)"
level=info ... build_context="(go=go1.17.8, user=root@265f14f5c6fc,
 date=20220325-09:31:33)"
level=info ... component=cluster msg="setting advertise address
 explicitly" addr=192.168.10.52 port=9094
level=info ... component=cluster msg="Waiting for gossip to settle..."
 interval=2s
level=info ... component=configuration msg="Loading configuration file"
 file=alertmanager.yml
level=info ... component=configuration msg="Completed loading of
 configuration file" file=alertmanager.yml
level=info ... msg=Listening address=:9093
level=info ... msg="TLS is disabled." http2=false
level=info component=cluster ... msg="gossip not settled" polls=0 before=0
 now=1 elapsed=2.00004715s
level=info component=cluster ... msg="gossip settled; proceeding"
 elapsed=10.001771352s
 polls=0 before=0 now=1 elapsed=2.00011639s

You can now access the Alertmanager in your browser at http://localhost:9093/ where
you will see your firing alert, which should look similar to Figure 2-18.

36 | Chapter 2: Getting Started with Prometheus

Figure 2-18. An InstanceDown alert in the Alertmanager

If everything is set up and working correctly, after a minute or two you should receive
a notification from the Alertmanager in your email inbox that looks like Figure 2-19.

Figure 2-19. An email notification for an InstanceDown alert

Alerting | 37

This basic setup has given you a small taste of what Prometheus can do. You could
add more targets to the prometheus.yml, and your alert would automatically work for
them too.

In the next chapter we are going to focus on a specific aspect of using Prometheus—
adding instrumentation to your own applications.

38 | Chapter 2: Getting Started with Prometheus

PART II

Application Monitoring

You will realize the full benefits of Prometheus when you have easy access to the
metrics you added to your own applications. This section covers adding and using
this instrumentation.

In Chapter 3 you will learn how to add basic instrumentation, and what is beneficial
instrumentation to have.

In Chapter 4 we cover making the metrics from your application available to
Prometheus.

In Chapter 5 you will learn about one of the most powerful features of Prometheus
and how to use it in instrumentation.

After you have your application metrics in Prometheus, Chapter 6 will show you how
you can create dashboards that group related graphs together.

CHAPTER 3

Instrumentation

The largest payoffs you will get from Prometheus are through instrumenting your
own applications using direct instrumentation and a client library. Client libraries are
available in a variety of languages, with official client libraries in Go, Python, Java,
Rust, and Ruby.

We use Python 3 here as an example, but the same general principles apply to other
languages and runtimes, although the syntax and utility methods will vary.

Most modern OSes come with Python 3. In the unlikely event that you don’t already
have it, download and install Python 3.

You will also need to install the latest Python client library. You can do this with
pip install prometheus_client. You can find the instrumentation examples on
GitHub.

A Simple Program
To start things off, we have written a simple HTTP server shown in Example 3-1. If
you run it with Python 3 and then visit http://localhost:8001/ in your browser, you will
get a Hello World response.

Example 3-1. A simple Hello World program that also exposes Prometheus metrics

import http.server
from prometheus_client import start_http_server

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

41

https://oreil.ly/6sAX9
https://oreil.ly/-IbFJ
https://oreil.ly/-IbFJ

if __name__ == "__main__":
 start_http_server(8000)
 server = http.server.HTTPServer(('localhost', 8001), MyHandler)
 server.serve_forever()

The start_http_server(8000) starts up an HTTP server on port 8000 to serve
metrics to Prometheus. You can view these metrics at http://localhost:8000/, which
will look like Figure 3-1. Which metrics are returned out of the box varies based on
the platform, with Linux platforms tending to have the most metrics.

Figure 3-1. The /metrics page when the simple program runs on Linux with CPython

Although you can manually review a /metrics page, getting the metrics into Prome‐
theus is what you really want. To do this, set up Prometheus with the configuration in
Example 3-2 and get it running.

Example 3-2. prometheus.yml to scrape http://localhost:8000/metrics

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: example
 static_configs:
 - targets:
 - localhost:8000

If you enter the PromQL expression python_info in the expression browser at http://
localhost:9090/, you should see something like Figure 3-2.

42 | Chapter 3: Instrumentation

http://localhost:8000/metrics

Figure 3-2. Evaluating the expression python_info produces one result

In the rest of this chapter we will presume that you have Prometheus running and
scraping your example application. You will use the expression browser as you go
along to work with the metrics you create.

The Counter
Counters are the type of metric you will probably use most often in instrumentation.
Counters track either the number or size of events. They are mainly used to track
how often a particular code path is executed.

Enhance Example 3-1 by including a new metric that tracks the number of times
“Hello World” has been requested, as demonstrated in Example 3-3.

Example 3-3. REQUESTS tracks the number of Hello Worlds returned

from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

There are three parts here—the import, the metric definition, and the
instrumentation:

The Counter | 43

1 Unfortunately, not all client libraries can have this happen automatically for various technical reasons.
2 It may increase by two due to your browser also hitting the /favicon.ico endpoint.

Import
Python requires that you import functions and classes from other modules in
order to use them. Accordingly, you must import the Counter class from the
prometheus_client library at the top of the file.

Definition
Prometheus metrics must be defined before they are used. Here we define
a counter called hello_worlds_total. It has a help string of Hello Worlds
requested., which will appear on the /metrics page to help you understand what
the metric means.

Metrics are automatically registered with the client library in the default registry.1

A registry is a place where metrics are registered, to be exposed. The default
registry is the registry used by default when querying /metrics. There are some
cases when passing a custom registry can be useful; one of the main cases is when
writing libraries used by other software.

In the Java library, for example, an extra function call is required, and depending
on how you use the Go library, you may also need to explicitly register metrics.
You do not need to pull the metric back to the start_http_server call; in fact,
how the code is instrumented is completely decoupled from the exposition. If
you have a transient dependency that includes Prometheus instrumentation, it
will appear on your /metrics page automatically.

Metrics must have unique names, and client libraries should report an error if
you try to register the same metric twice. To avoid this, define your metrics at
file level, not at class, function, or method level. An alternative pattern is to use
custom explicit registries and local definitions.

Instrumentation
Now that you have the metric object defined, you can use it. The inc method
increments the counter’s value by one.

Prometheus client libraries take care of all the nitty-gritty details like bookkeep‐
ing and thread safety for you, so that is all there is to it.

When you run the program, the new metric will appear on the /metrics page. It
will start at zero and increase by one2 every time you view the main URL of the
application. You can view this in the expression browser and use the PromQL expres‐
sion rate(hello_worlds_total[1m]) to see how many Hello World requests are
happening per second, as Figure 3-3 shows.

44 | Chapter 3: Instrumentation

Figure 3-3. A graph of Hello Worlds per second

With just two lines of code, you can add a counter to any library or application.
These counters are useful to track how many times errors and unexpected situations
occur. While you probably don’t want to alert every single time there is an error,
knowing how errors are trending over time is useful for debugging. But this is not
restricted to errors. Knowing which are the most popular features and code paths of
your application allows you to optimize how you allocate your development efforts.

Counting Exceptions
Client libraries provide not just core functionality, but also utilities and methods for
common use cases. One of these in Python is the ability to count exceptions. You
don’t have to write your own instrumentation using a try…except; instead, you can
take advantage of the count_exceptions context manager and decorator, as shown in
Example 3-4.

The Counter | 45

Example 3-4. EXCEPTIONS counts the number of exceptions using a context manager

import random
from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')
EXCEPTIONS = Counter('hello_world_exceptions_total',
 'Exceptions serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 with EXCEPTIONS.count_exceptions():
 if random.random() < 0.2:
 raise Exception
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

count_exceptions will take care of passing the exception up by raising it, so it
does not interfere with application logic. You can see the rate of exceptions with
rate(hello_world_exceptions_total[1m]). The number of exceptions isn’t that
useful without knowing how many requests are going through. You can calculate the
more useful ratio of exceptions with:

 rate(hello_world_exceptions_total[1m])
/
 rate(hello_worlds_total[1m])

in the expression browser. This is how to generally expose ratios: expose two coun‐
ters, then rate and divide them in PromQL.

You may notice gaps in the exception ratio graph for periods when
there are no requests. This is because you are dividing by zero,
which in floating-point math results in a NaN, or Not a Number.
Returning a zero would be incorrect as the exception ratio is not
zero, it is undefined.

You can also use count_exceptions as a function decorator:

EXCEPTIONS = Counter('hello_world_exceptions_total',
 'Exceptions serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @EXCEPTIONS.count_exceptions()
 def do_GET(self):
 ...

46 | Chapter 3: Instrumentation

Counting Size
Prometheus uses 64-bit floating-point numbers for values so you are not limited
to incrementing counters by one. You can in fact increment counters by any non-
negative number. This allows you to track the number of records processed, bytes
served, or sales in euros, as shown in Example 3-5.

Example 3-5. SALES tracks sale value in euros

import random
from prometheus_client import Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.')
SALES = Counter('hello_world_sales_euro_total',
 'Euros made serving Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.inc()
 euros = random.random()
 SALES.inc(euros)
 self.send_response(200)
 self.end_headers()
 self.wfile.write("Hello World for {} euros.".format(euros).encode())

You can see the rate of sales in euros per second in the expression browser using
the expression rate(hello_world_sales_euro_total[1m]), the same as for integer
counters.

Attempting to increase a counter by a negative number is consid‐
ered to be a programming error on your part, and will cause an
exception to be raised.
It is important for PromQL that counters only ever increase, so that
rate and friends don’t misinterpret the decrease as counters reset‐
ting to zero when an application restarts. This also means there’s no
need to persist counter state across runs of an application, or reset
counters on every scrape. This allows multiple Prometheus servers
to scrape the same application without affecting each other.

The Gauge
Gauges are a snapshot of some current state. While for counters how fast it is
increasing is what you care about, for gauges it is the actual value of the gauge.
Accordingly, the values can go both up and down.

The Gauge | 47

3 While this is a gauge, it is best exposed using a counter. You can convert a requests over time counter to a
gauge in PromQL with the rate function.

4 Unlike counters, gauges can decrease, so it is fine to pass negative numbers to a gauge’s inc method.

Examples of gauges include:

• The number of items in a queue•
• Memory usage of a cache•
• Number of active threads•
• The last time a record was processed•
• Average requests per second in the last minute3•

Using Gauges
Gauges have three main methods you can use: inc,4 dec, and set. Similar to the
methods on counters, inc and dec default to changing a gauge’s value by one. You can
pass an argument with a different value to change by if you want. Example 3-6 shows
how gauges can be used to track the number of calls in progress and determine when
the last one was completed.

Example 3-6. INPROGRESS and LAST track the number of calls in progress and when the
last one was completed

import time
from prometheus_client import Gauge

INPROGRESS = Gauge('hello_worlds_inprogress',
 'Number of Hello Worlds in progress.')
LAST = Gauge('hello_world_last_time_seconds',
 'The last time a Hello World was served.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 INPROGRESS.inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LAST.set(time.time())
 INPROGRESS.dec()

These metrics can be used directly in the expression browser without any additional
functions. For example, hello_world_last_time_seconds can be used to determine
when the last Hello World was served. The main use case for such a metric is

48 | Chapter 3: Instrumentation

5 Seconds are the base unit for time, and thus preferred in Prometheus to other time units such as minutes,
hours, days, milliseconds, microseconds, and nanoseconds.

detecting if it has been too long since a request was handled. The PromQL expression
time() - hello_world_last_time_seconds will tell you how many seconds it is
since the last request.

These are both very common use cases, so utility functions are also provided for
them, as you can see in Example 3-7. track_inprogress has the advantage of
being both shorter and taking care of correctly handling exceptions for you. set_to_
current_time is a little less useful in Python, as time.time() returns Unix time,
in seconds;5 but in other languages’ client libraries, the set_to_current_time equiva‐
lents make usage simpler and clearer.

Example 3-7. The same example as Example 3-6 but using the gauge utilities

from prometheus_client import Gauge

INPROGRESS = Gauge('hello_worlds_inprogress',
 'Number of Hello Worlds in progress.')
LAST = Gauge('hello_world_last_time_seconds',
 'The last time a Hello World was served.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @INPROGRESS.track_inprogress()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LAST.set_to_current_time()

Metric Suffixes
You may have noticed that the example counter metrics all ended with _total, while
there is no such suffix on gauges. This is a convention within Prometheus that makes
it easier to identify what type of metric you are working with.

With OpenMetrics, this suffix is mandated. As the prometheus_client Python library
is the reference implementation for OpenMetrics, if you do not add the suffix, the
library will add it for you.

In addition to _total, the _count, _sum, and _bucket suffixes also have other mean‐
ings and should not be used as suffixes in your metric names to avoid confusion.

The Gauge | 49

6 In practice, there is not much need for such a metric. The timestamp PromQL function will return the
timestamp of a sample, and the time PromQL function will return the query evaluation time.

It is also strongly recommended that you include the unit of your metric at the end
of its name. For example, a counter for bytes processed might be myapp_requests_
processed_bytes_total.

Callbacks
To track the size or number of items in a cache, you should generally add inc and
dec calls in each function where items are added or removed from the cache. With
more complex logic this can get a bit tricky to get right and maintain as the code
changes. The good news is that client libraries offer a shortcut to implement this,
without having to use the interfaces that writing an exporter require.

In Python, gauges have a set_function method, which allows you to specify a
function to be called at exposition time. Your function must return a floating-point
value for the metric when called, as demonstrated in Example 3-8. However, this
strays a bit outside of direct instrumentation, so you will need to consider thread
safety and may need to use mutexes when designing those callback functions.

Example 3-8. A trivial example of set_function to have a metric return the current
time6

import time
from prometheus_client import Gauge

TIME = Gauge('time_seconds',
 'The current time.')
TIME.set_function(lambda: time.time())

The Summary
Knowing how long your application took to respond to a request or the latency of
a backend are vital metrics when you are trying to understand the performance of
your systems. Other instrumentation systems offer some form of Timer metric, but
Prometheus views things more generically. Just as counters can be incremented by
values other than one, you may wish to track things about events other than their
latency. For example, in addition to backend latency you may also wish to track the
size of the responses you get back.

50 | Chapter 3: Instrumentation

The primary method of a summary is observe, to which you pass the size of the
event. This must be a nonnegative value. Using time.time() you can track latency, as
shown in Example 3-9.

Example 3-9. LATENCY tracks how long the Hello World handler takes to run

import time
from prometheus_client import Summary

LATENCY = Summary('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 start = time.time()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")
 LATENCY.observe(time.time() - start)

If you look at the /metrics page, you will see that the hello_world_latency_
seconds metric has two time series: hello_world_latency_seconds_count and
hello_world_latency_seconds_sum.

hello_world_latency_seconds_count is the number of observe calls that have
been made, so rate(hello_world_latency_seconds_count[1m]) in the expression
browser would return the per-second rate of Hello World requests.

hello_world_latency_seconds_sum is the sum of the values passed to observe,
so rate(hello_world_latency_seconds_sum[1m]) is the amount of time spent
responding to requests per second.

If you divide these two expressions, you get the average latency over the last minute.
The full expression for average latency would be:

 rate(hello_world_latency_seconds_sum[1m])
/
 rate(hello_world_latency_seconds_count[1m])

Let’s take an example. Say in the last minute you had three requests that took 2, 4, and
9 seconds. The count would be 3 and the sum would be 15 seconds, so the average
latency is 5 seconds. rate is per second rather than per minute, so in principle you
need to divide both sides by 60, but that cancels out.

The Summary | 51

7 System time can go backward if the date is manually set in the kernel, or if a daemon is trying to keep things
in sync with the Network Time Protocol (NTP).

Even though the hello_world_latency_seconds metric is using
seconds as its unit in line with Prometheus conventions, this does
not mean it only has second precision. Prometheus uses 64-bit
floating-point values that can handle metrics ranging from days to
nanoseconds. The preceding example takes about a quarter of a
millisecond on our machine, for example.

As summaries are usually used to track latency, there is a time context manager and
function decorator that makes this simpler, as you can see in Example 3-10. It also
handles exceptions and time going backward for you.7

Example 3-10. LATENCY tracking latency using the time function decorator

from prometheus_client import Summary

LATENCY = Summary('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @LATENCY.time()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

Summary metrics may also include quantiles, although the Python client does not
currently support these client-side quantiles. These should generally be avoided as
you cannot do math such as averages on top of quantiles, preventing you from aggre‐
gating client-side quantiles from across the instances of your service. In addition,
client-side quantiles are expensive compared to other instrumentation in terms of
CPU usage (a factor of a hundred slower is not unusual). While the benefits of
instrumentation generally greatly outweigh their resource costs, this may not be the
case for quantiles.

The Histogram
A summary will provide the average latency, but what if you want a quantile? Quan‐
tiles tell you that a certain proportion of events had a size below a given value. For
example, the 0.95 quantile being 300 ms means that 95% of requests took less than
300 ms.

52 | Chapter 3: Instrumentation

Quantiles are useful when reasoning about actual end-user experience. If a user’s
browser makes 20 concurrent requests to your application, then it is the slowest
of them that determines the user-visible latency. In this case, the 95th percentile
captures that latency.

The 95th percentile is the 0.95 quantile. As Prometheus prefers
base units, it always uses quantiles, in the same way that ratios are
preferred to percentages.

The instrumentation for histograms is the same as for summaries. The observe
method allows you to do manual observations, and the time context manager and
function decorator allow for easier timings, as shown in Example 3-11.

Example 3-11. LATENCY histogram tracking latency using the time function decorator

from prometheus_client import Histogram

LATENCY = Histogram('hello_world_latency_seconds',
 'Time for a request Hello World.')

class MyHandler(http.server.BaseHTTPRequestHandler):
 @LATENCY.time()
 def do_GET(self):
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

This will produce a set of time series with the name hello_world_latency_sec
onds_bucket, which are a set of counters. A histogram has a set of buckets, such
as 1 ms, 10 ms, and 25 ms, that track the number of events that fall into each
bucket. The histogram_quantile PromQL function can calculate a quantile from the
buckets. For example, the 0.95 quantile (95th percentile) would be:

histogram_quantile(0.95, rate(hello_world_latency_seconds_bucket[1m]))

The rate is needed as the buckets’ time series are counters.

Buckets
The default buckets cover a range of latencies from 1 ms to 10 s. This is intended to
capture the typical range of latencies for a web application. But you can also override
them and provide your own buckets when defining metrics. This might be done if
the defaults are not suitable for your use case, or to add an explicit bucket for latency
quantiles mentioned in your Service-Level Agreements (SLAs). In order to help you
detect typos, the provided buckets must be sorted:

The Histogram | 53

8 The +Inf bucket is required, and should never be dropped.
9 Particularly if the histogram has labels.

LATENCY = Histogram('hello_world_latency_seconds',
 'Time for a request Hello World.',
 buckets=[0.0001, 0.0002, 0.0005, 0.001, 0.01, 0.1])

If you want linear or exponential buckets, you can use Python list comprehensions.
Client libraries for languages that do not have an equivalent to list comprehensions
may include utility functions for these:

buckets=[0.1 * x for x in range(1, 10)] # Linear
buckets=[0.1 * 2**x for x in range(1, 10)] # Exponential

Cumulative Histograms
If you have looked at a /metrics page for a histogram, you probably noticed that the
buckets aren’t just a count of events that fall into them. The buckets also include a
count of events in all the smaller buckets, all the way up to the +Inf bucket, which
is the total number of events. This is known as a cumulative histogram, and why the
bucket label is called le, standing for less than or equal to.

This is in addition to buckets being counters, so Prometheus histograms are cumula‐
tive in two different ways.

The reason they’re cumulative is that if the number of buckets becomes a perfor‐
mance problem, some extraneous buckets8 can be dropped using metric_relabel_
configs (see “metric_relabel_configs” on page 164) in Prometheus while still allow‐
ing quantiles to be calculated. There is an example of this in Example 8-27.

You may be wondering how many buckets you should have for sufficient accuracy.
We recommend sticking to somewhere around 10. This may seem like a small
number, but buckets are not free, as each is an extra time series to be stored.9

Fundamentally, a metrics-based system like Prometheus is not going to provide
100% accurate quantiles. For that you would need to calculate the quantiles from a
log-based system. But what Prometheus provides is good enough for most practical
alerting and debugging purposes.

The best way to think of buckets (and metrics generally) is that while they may not
always be perfect, they generally give you sufficient information to determine the next
step when you are debugging. So, for example, if Prometheus indicates that the 0.95
quantile jumped from 300 ms to 350 ms, but it was actually from 305 ms to 355 ms,
that doesn’t matter that much. You still know that there was a big jump, and the next
step in your investigation would be the same either way.

54 | Chapter 3: Instrumentation

At the time of writing this book, there is a new experimental
feature in Prometheus and some client libraries, called Native His‐
tograms. They use dynamic buckets and fix most of the issues of
“old” histograms.
Ganesh Vernekar and Björn Rabenstein talked about that experi‐
mental feature at PromCon 2022:

• Native Histograms in Prometheus talk•
• PromQL for Native Histograms talk•

SLAs and Quantiles
Latency SLAs will often be expressed as 95th percentile latency is at most 500 ms.
There is a nonobvious trap here, in that you may focus on the wrong number.

Calculating the 95th percentile accurately is tricky, requiring what may be significant
computing resources if you want to get it perfect. Calculating how the proportion of
requests that took more than 500 ms is easy though—you only need two counters:
one for all requests and another for requests that took up to 500 ms.

By having a 500 ms bucket in your histogram, you can accurately calculate the ratio of
requests that take over 500 ms using:

 my_latency_seconds_bucket{le="0.5"}
/ ignoring(le)
 my_latency_seconds_bucket{le="+Inf"}

to determine if you are meeting your SLA. The rest of the buckets will still give you a
good estimate of the 95th percentile latency.

Tools like Pyrra can assist in managing your SLOs, calculating error budget, and
producing recording and alerting rules.

Quantiles are limited in that once you calculate them, you cannot do any further
math on them. It is not statistically correct to add, subtract, or average them, for
example. This affects not just what you might attempt in PromQL, but also how you
reason about a system while debugging it. A frontend may report a latency increase in
the 0.95 quantile, yet the backend that caused it may show no such increase (or even a
decrease!).

This can be very counterintuitive, especially when you have been woken up in the
middle of the night to debug a problem. Averages, on the other hand, do not have

The Histogram | 55

https://oreil.ly/uLAxm
https://oreil.ly/8CNJx
https://pyrra.dev

10 However, it is not correct to average a set of averages. For example, if you had 3 events with an average of 5,
and 4 events with an average of 6, the overall average would not be 5 + 6 / 2 = 5.5, but rather (3 * 5 + 4 * 6) /
(3 + 4) = 5.57.

11 Categories of logs were mentioned in “Logging” on page 9.

this problem; they can be added and subtracted.10 For example, if you see a 20 ms
increase in latency in a frontend due to one of its backends, you will see a matching
latency increase of around 20 ms in the backend. But there is no such guarantee with
quantiles. So while quantiles are good for capturing end-user experience, they are
tricky to debug with.

We recommend debugging latency issues primarily with averages rather than quan‐
tiles. Averages work the way you think they do, and once you have narrowed down
the subsystem to blame for a latency increase using averages, you can switch back
to quantiles if appropriate. To this end, the histogram also includes _sum and _count
time series. Just like with a summary, you can calculate average latency with:

 rate(hello_world_latency_seconds_sum[1m])
/
 rate(hello_world_latency_seconds_count[1m])

Unit Testing Instrumentation
Unit tests are a good way to avoid accidentally breaking your code as it changes over
time. You should approach unit testing instrumentation the same way you approach
unit tests for logs. Just as you would probably not test a debug-level log statement,
neither should you test the majority of metrics that you sprinkle across your code
base.

You would usually only unit test log statements for transaction logs and sometimes
request logs.11 Similarly, it usually makes sense to unit test metrics where the metric
is a key part of your application or library. For example, if you are writing an RPC
library, it would make sense to have at least some basic tests to make sure the key
requests, latency, and error metrics are working.

Without tests, some of the noncritical metrics you might use for debugging may not
work, and in our experience this will be the case for around 5% of debug metrics.
Requiring all metrics to be unit tested would add friction to instrumentation, so
rather than ending up with 20 metrics of which 19 are usable, you might instead end
up with only 5 tested metrics. It would no longer be a case of adding two lines of code
to add a metric. When it comes to using metrics for debugging and deep performance
analysis, a wider breadth of metrics is always useful.

The Python client offers a get_sample_value function that will effectively scrape
the registry and look for a time series. You can use get_sample_value as shown in

56 | Chapter 3: Instrumentation

Example 3-12 to test counter instrumentation. It is the increase of a counter that you
care about, so you should compare the value of the counter before and after, rather
than the absolute value. This will work even if other tests have also caused the counter
to be incremented.

Example 3-12. Unit testing a counter in Python

import unittest
from prometheus_client import Counter, REGISTRY

FOOS = Counter('foos_total', 'The number of foo calls.')

def foo():
 FOOS.inc()

class TestFoo(unittest.TestCase):
 def test_counter_inc(self):
 before = REGISTRY.get_sample_value('foos_total')
 foo()
 after = REGISTRY.get_sample_value('foos_total')
 self.assertEqual(1, after - before)

Approaching Instrumentation
Now that you know how to use instrumentation, it is important to know where and
how much you should apply it.

What Should I Instrument?
When instrumenting, you will usually be looking to either instrument services or
libraries.

Service instrumentation
Broadly speaking, there are three types of services, each with their own key metrics:
online-serving systems, offline-serving systems, and batch jobs.

Online-serving systems are those where either a human or another service is waiting
on a response. These include web servers and databases. The key metrics to include
in service instrumentation are the request rate, latency, and error rate. Having request
rate, latency, and error rate metrics is sometimes called the RED method, for Rate,
Errors, and Duration. These metrics are not just useful to you from the server side,
but also the client side. If you notice that the client is seeing more latency than the
server, you might have network issues or an overloaded client.

Approaching Instrumentation | 57

When instrumenting duration, don’t be tempted to exclude fail‐
ures. If you were to include only successes, then you might not
notice high latency caused by many slow but failing requests.

Offline-serving systems do not have someone waiting on them. They usually batch
up work and have multiple stages in a pipeline with queues between them. A log
processing system is an example of an offline-serving system. For each stage you
should have metrics for the amount of queued work, how much work is in progress,
how fast you are processing items, and errors that occur. These metrics are also
known as the USE method, for Utilization, Saturation, and Errors. Utilization is
how full your service is, saturation is the amount of queued work, and errors is
self-explanatory. If you are using batches, then it is useful to have metrics both for the
batches and the individual items.

Batch jobs are the third type of service, and they are similar to offline-serving sys‐
tems. However, batch jobs run on a regular schedule, whereas offline-serving systems
run continuously. As batch jobs are not always running, scraping them doesn’t work
too well, so techniques such as the Pushgateway (discussed in “Pushgateway” on page
76) and the Node Exporter textfile collector (discussed in “Textfile Collector” on
page 134) are used. At the end of a batch job you should record how long it took
to run, how long each stage of the job took, and the time at which the job last
succeeded. You can add alerts if the job hasn’t succeeded recently enough, allowing
you to tolerate individual batch job run failures.

Idempotency for Batch Jobs
Idempotency is the property of getting the same result from an operation or function
regardless of how many times you run it. This is a useful property for batch jobs as it
means handling a failed job is simply a matter of retrying, so you don’t have to worry
as much about individual failures.

To achieve this you should avoid passing which items of work (such as the previous
day’s data) a batch job should work on. Instead, you should have the batch job infer
that and continue from where it left off.

This has the additional benefit that you can have your batch jobs retry themselves.
For example, you might have a daily batch job run instead a few times per day, so that
even if there is a transient failure, the next run will take care of it. Alert thresholds can
be increased accordingly, as you will need to manually intervene less often.

58 | Chapter 3: Instrumentation

12 You should not try dividing the failures by the successes.
13 This was roughly the performance limit of Prometheus 1.x.
14 This calculation is valid for a Counter or a Gauge without labels.

Library instrumentation
Services are what you care about at a high level. Within each of your services
there are libraries that you can think of as mini services. The majority will be online-
serving subsystems, which is to say, synchronous function calls, and benefit from
the same metrics of requests, latency, and errors. For a cache, you would want these
metrics both for the cache overall and the cache misses that then need to calculate the
result or request it from a backend.

With metrics for failures and total, it is easy to calculate the failure
ratio by division. With success and failures this is trickier,12 as you
first need to calculate the total.
Similarly, for caches it is best to have either hits and total requests,
or failures and total requests. All of total, hits, and misses works
fine too.

It is beneficial to add metrics for any errors that occur and anywhere that you have
logging. You might only keep your debug logs for a few days due to their volume, but
with a metric you can still have a good of idea of the frequency of that log line over
time.

Thread and worker pools should be instrumented similarly to offline-serving sys‐
tems. You will want to have metrics for the queue size, active threads, any limit on the
number of threads, and errors encountered.

Background maintenance tasks that run no more than a few times an hour are
effectively batch jobs, and you should have similar metrics for these tasks.

How Much Should I Instrument?
While Prometheus is extremely efficient, there are limits to how many metrics it can
handle. At some point the operational and resource costs outweigh the benefits for
certain instrumentation strategies.

The good news is that most of the time you don’t need to worry about this. Let’s
say that you had a Prometheus server that could handle 10 million metrics13 and
1,000 application instances. A single new metric on each of these instances would use
0.01% of your resources, making it effectively free.14 This means you are able to add
individual metrics by hand where it is useful.

Approaching Instrumentation | 59

15 Chapter 5 looks at labels, which are a powerful feature of Prometheus that make this possible.

Where you need to be careful is when things get industrial. If you automatically add
a metric for the duration of every function, that can add up fast (it is classic profiling,
after all). If you have metrics broken out by request type and HTTP URL,15 all the
potential combinations can easily take up a significant chunk of your resources.
Histogram buckets expand that again. A metric with a cardinality of a hundred on
each instance would take up 1% of your Prometheus server’s resources, which is a less
clear win and certainly not free. We discuss this further in “Cardinality” on page 99.

It is common for the 10 biggest metrics in a Prometheus instance to constitute over
half of its resource usage. If you are trying to manage the resource usage of your
Prometheus, you will get a better return for your efforts by focusing on the 10 biggest
metrics.

As a rule of thumb, a simple service like a cache might have a hundred metrics in
total, while a complex and well-instrumented service might have a thousand.

What Should I Name My Metrics?
The naming of metrics is more of an art than a science. There are some simple rules
you can follow to avoid the more obvious pitfalls, and also general guidelines to
construct your metric names.

Renaming metrics can make it difficult to track and analyze data
accurately over time, as it can break existing queries and dash‐
boards. Complex workarounds such as editing PromQL queries
may be required to maintain the integrity of your data when a
metric gets renamed.

The overall structure of a metric name is generally library_name_unit_suffix.

Characters
Prometheus metric names should start with a letter, and can be followed with any
number of letters, numbers, and underscores.

While [a-zA-Z_:][a-zA-Z0-9_:]* is a regular expression for valid metric names for
Prometheus, you should avoid some of the valid values. You should not use colons in
instrumentation as they are reserved for user use in recording rules, as discussed in
“Naming of Recording Rules” on page 304. Underscores at the start of metric names
are reserved for internal Prometheus use.

60 | Chapter 3: Instrumentation

16 As a general rule, ratios typically go from 0…1 and percentages go from 0…100.
17 At one point Prometheus itself was using seconds, milliseconds, microseconds, and nanoseconds for metrics.

snake_case
The convention with Prometheus is to use snake case for metric names; that is, each
component of the name should be lowercase and separated by an underscore.

Metric suffixes

The _total, _count, _sum, and _bucket suffixes are used by the counter, summary,
and histogram metrics. Aside from always having a _total suffix on counters,
you should avoid putting these suffixes on the end of your metric names to avoid
confusion.

Units
You should prefer using unprefixed base units such as seconds, bytes, and ratios.16

This is because Prometheus uses seconds in functions such as time, and it avoids
ugliness such as kilomicroseconds.

Using only one unit avoids confusion as to whether this particular metric is seconds
or milliseconds,17 so you should always include the unit of your metric in the name.
For example, mymetric_seconds_total for a counter with a unit of seconds.

There is not always an obvious unit for a metric, so don’t worry if your metric name
is missing a unit. You should avoid count as a unit, as aside from clashing with
summaries and histograms, most metrics are counts of something so it doesn’t tell
you anything. Similarly with total.

Name
The meat of a metric name is, um, the name. The name of a metric should give
someone who has no knowledge of the subsystem the metric is from a good idea
of what it means. requests is not very insightful, http_requests is better, and
http_requests_authenticated is better again. The metric description can expand
further, but often the user will only have the metric name to go on.

As you can see from the preceding examples, a name may have several underscore-
separated components. Try to have the same prefix on related metrics, so that it’s
easier to understand their relationship. queue_size and queue_limit are more useful
than size_queue and limit_queue. You might even have items and items_limit.
Names generally go from less to more specific as you go from left to right.

Approaching Instrumentation | 61

Do not put what should be labels (covered in Chapter 5) in metric names. When
implementing direct instrumentation, you should never procedurally generate met‐
rics or metric names.

You should avoid putting the names of labels that a metric has
into a metric’s name because it will be incorrect when that label is
aggregated away with PromQL.

Library
As metrics names are effectively a global namespace, it is important to both try to
avoid collisions between libraries and indicate where a metric is coming from. A
metric name is ultimately pointing you to a specific line of code in a specific file in
a specific library. A library could be a stereotypical library that you have pulled in
as a dependency, a subsystem in your application, or even the main function of the
application itself.

You should provide sufficient distinction in the library part of the metric name
to avoid confusion, but there’s no need to include complete organization names
and paths in source control. There is a balance between succinctness and full
qualification.

For example, Cassandra is a well-established application so it would be appropriate
for it to use just cassandra as the library part of its metric names. On the other hand,
using db for a company’s internal database connection pool library would be unwise,
as database libraries and database connection pool libraries are both quite common.
You might even have several inside the same application. robustperception_db_pool
or rp_db_pool would be better choices there.

Some library names are already established. The process library exposes process-
level metrics such as CPU and memory usage, and is standardized across client
libraries. Thus you should not expose additional metrics with this prefix. Client
libraries also expose metrics relating to their runtime. Python metrics use python,
Java Virtual Machine (JVM) metrics use jvm, and Go uses go.

62 | Chapter 3: Instrumentation

18 The heap is the memory of your process that is dynamically allocated. It is used for memory allocation by
functions such as malloc.

Combining these steps produces metric names like go_memstats_heap_inuse_bytes.
This is from the go_memstats library, memory statistics from the Go runtime.
heap_inuse indicates the metric is related to the amount of heap being used, and
bytes tells us that it is measured in bytes. From just the name you can tell that it is
the amount of the heap memory18 that Go is currently using. While the meaning of a
metric will not always be this obvious from the name, it is something to strive for.

You should not prefix all metric names coming from an application
with the name of the application. process_cpu_seconds_total is
process_cpu_seconds_total no matter which application exposes
it. The way to distinguish metrics from different applications is
with target labels, not metric names. See “Target Labels” on page
153.

Now that you have instrumented your application, let’s look at how you can expose
those metrics to Prometheus.

Approaching Instrumentation | 63

CHAPTER 4

Exposition

In Chapter 3 we mainly focused on adding instrumentation to your code. But all the
instrumentation in the world isn’t much use if the metrics produced don’t end up in
your monitoring system. The process of making metrics available to Prometheus is
known as exposition.

Exposition to Prometheus is done over HTTP. Usually you expose metrics under
the /metrics path, and the request is handled for you by a client library. Prometheus
supports two human-readable text formats: the Prometheus text format and Open‐
Metrics. You have the option of producing the exposition format by hand, in which
case it will be easier with the Prometheus text format, which is less strict. You
may choose to do this if there is no suitable library for your language, but it is
recommended you use a library as it’ll get all the little details like escaping correct.
Most of the libraries will also provide the ability to produce metrics using both the
OpenMetrics and Prometheus text format.

Exposition is typically done either in your main function or another top-level func‐
tion and only needs to be configured once per application.

Metrics are usually registered with the default registry when you define them. If one
of the libraries you are depending on has Prometheus instrumentation, the metrics
will be in the default registry and you will gain the benefit of that additional instru‐
mentation without having to do anything. Some users prefer to explicitly pass a regis‐
try all the way down from the main function, so you’d have to rely on every library
between your application’s main function and the Prometheus instrumentation being
aware of the instrumentation. This presumes that every library in the dependency
chain cares about instrumentation and agrees on the choice of instrumentation
libraries.

65

1 No exposition means that the metrics are not scraped by a Prometheus server.

This design allows for instrumentation for Prometheus metrics with no exposition at
all.1 In that case, aside from still paying the (tiny) resource cost of instrumentation,
there is no impact on your application. If you are the one writing a library, you can
add instrumentation for your users using Prometheus without requiring extra effort
for your users who don’t monitor. To better support this use case, the instrumentation
parts of client libraries try to minimize their dependencies.

Let’s take a look at exposition in some of the popular client libraries. We are going to
presume here that you know how to install the client libraries and any other required
dependencies.

Python
You have already seen start_http_server in Chapter 3. It starts up a background
thread with an HTTP server that only serves Prometheus metrics, as follows:

from prometheus_client import start_http_server

if __name__ == '__main__':
 start_http_server(8000)
 // Your code goes here.

start_http_server is very convenient to get up and running quickly. But it is likely
that you already have an HTTP server in your application that you would like your
metrics to be served from.

In Python there are various ways this can be done depending on which frameworks
you are using.

WSGI
Web Server Gateway Interface (WSGI) is a Python standard for web applications. The
Python client provides a WSGI app that you can use with your existing WSGI code.
In Example 4-1, the metrics_app is delegated to by my_app if the /metrics path is
requested; otherwise, it performs its usual logic. By chaining WSGI applications, you
can add middleware such as authentication, which client libraries do not offer out of
the box.

Example 4-1. Exposition using WSGI in Python

from prometheus_client import make_wsgi_app
from wsgiref.simple_server import make_server

metrics_app = make_wsgi_app()

66 | Chapter 4: Exposition

https://oreil.ly/5B1tz

def my_app(environ, start_fn):
 if environ['PATH_INFO'] == '/metrics':
 return metrics_app(environ, start_fn)
 start_fn('200 OK', [])
 return [b'Hello World']

if __name__ == '__main__':
 httpd = make_server('', 8000, my_app)
 httpd.serve_forever()

Does It Have to Be /metrics?
/metrics is the HTTP path where Prometheus metrics are served by convention,
but it’s just a convention, so you can put the metrics on other paths. For example,
if /metrics is already in use in your application or you want to put administrative
endpoints under an /admin/ prefix.

Even if it is on another path, it is still common to refer to such an endpoint as
your /metrics.

Twisted
Twisted is a Python event-driven network engine. It supports WSGI so you can plug
in make_wsgi_app, as shown in Example 4-2.

Example 4-2. Exposition using Twisted in Python

from prometheus_client import make_wsgi_app
from twisted.web.server import Site
from twisted.web.wsgi import WSGIResource
from twisted.web.resource import Resource
from twisted.internet import reactor

metrics_resource = WSGIResource(
 reactor, reactor.getThreadPool(), make_wsgi_app())

class HelloWorld(Resource):
 isLeaf = False
 def render_GET(self, request):
 return b"Hello World"

root = HelloWorld()
root.putChild(b'metrics', metrics_resource)

reactor.listenTCP(8000, Site(root))
reactor.run()

Python | 67

https://twisted.org

2 CPython is the official name of the standard Python implementation. Do not confuse it with Cython, which
can be used to write C extensions in Python.

3 The Pushgateway is not suitable for this use case, so this is not a problem in practice.

4 child_exit was added in Gunicorn version 19.7 released in March 2017.

Multiprocess with Gunicorn
Prometheus assumes that the applications it is monitoring are long-lived and multi‐
threaded. But this can fall apart a little with runtimes such as CPython.2 CPython is
effectively limited to one processor core due to the Global Interpreter Lock (GIL). To
work around this, some users spread the workload across multiple processes using a
tool such as Gunicorn.

If you were to use the Python client library in the usual fashion, each worker would
track its own metrics. Each time Prometheus went to scrape the application, it would
randomly get the metrics from only one of the workers, which would be only a
fraction of the information and would also have issues such as counters appearing to
be going backward. Workers can also be relatively short-lived.

The solution to this problem offered by the Python client is to have each worker track
its own metrics. At exposition time all the metrics of all the workers are combined in
a way that provides the semantics you would get from a multithreaded application.
There are some limitations to the approach used: the process_ metrics and custom
collectors will not be exposed, and the Pushgateway cannot be used.3

Using Gunicorn, you need to let the client library know when a worker process exits.4

This is done in a config file like the one in Example 4-3.

Example 4-3. Gunicorn config.py to handle worker processes exiting

from prometheus_client import multiprocess

def child_exit(server, worker):
 multiprocess.mark_process_dead(worker.pid)

You will also need an application to serve the metrics. Gunicorn uses WSGI, so you
can use make_wsgi_app. You must create a custom registry containing only a Multi
ProcessCollector for exposition, so that it does not include both the multiprocess
metrics and metrics from the local default registry (Example 4-4).

Example 4-4. Gunicorn application in app.py

from prometheus_client import multiprocess, make_wsgi_app, CollectorRegistry
from prometheus_client import Counter, Gauge

68 | Chapter 4: Exposition

https://gunicorn.org

REQUESTS = Counter("http_requests_total", "HTTP requests")
IN_PROGRESS = Gauge("http_requests_inprogress", "Inprogress HTTP requests",
 multiprocess_mode='livesum')

@IN_PROGRESS.track_inprogress()
def app(environ, start_fn):
 REQUESTS.inc()
 if environ['PATH_INFO'] == '/metrics':
 registry = CollectorRegistry()
 multiprocess.MultiProcessCollector(registry)
 metrics_app = make_wsgi_app(registry)
 return metrics_app(environ, start_fn)
 start_fn('200 OK', [])
 return [b'Hello World']

As you can see in Example 4-4, counters work normally, as do summaries and
histograms. For gauges there is additional optional configuration using multiproc
ess_mode. You can configure the gauge based on how you intended to use it, as
follows:

all

The default, which returns a time series from each process, whether it is alive or
dead. This allows you to aggregate the series as you wish in PromQL. They will
be distinguished by a pid label.

liveall

Returns a time series from each alive process.

livesum

Returns a single time series that is the sum of the value from each alive process.
You would use this for things like in-progress requests or resource usage across
all processes. A process might have aborted with a nonzero value, so dead
processes are excluded.

max

Returns a single time series that is the maximum of the value from each alive
or dead process. This is useful if you want to track the last time something
happened, such as a request being processed, which could have been in a process
that is now dead.

min

Returns a single time series that is the minimum of the value from each alive or
dead process.

There is a small bit of setup before you can run Gunicorn, as shown in Example 4-5.
You must set an environment variable called prometheus_multiproc_dir. This points
to an empty directory the client library uses for tracking metrics. Before starting the

Python | 69

application, you should always wipe this directory to handle any potential changes to
your instrumentation.

Example 4-5. Preparing the environment before starting Gunicorn with two workers

hostname $ export prometheus_multiproc_dir=$PWD/multiproc
hostname $ rm -rf $prometheus_multiproc_dir
hostname $ mkdir -p $prometheus_multiproc_dir
hostname $ gunicorn -w 2 -c config.py app:app
[2018-01-07 19:05:30 +0000] [9634] [INFO] Starting gunicorn 19.7.1
[2018-01-07 19:05:30 +0000] [9634] [INFO] Listening at: http://127.0.0.1:8000 (9634)
[2018-01-07 19:05:30 +0000] [9634] [INFO] Using worker: sync
[2018-01-07 19:05:30 +0000] [9639] [INFO] Booting worker with pid: 9639
[2018-01-07 19:05:30 +0000] [9640] [INFO] Booting worker with pid: 9640

When you look at the /metrics path, you will see the two defined metrics, but
python_info and the process_ metrics will not be there.

Multiprocess Mode Under the Covers
Performance is vital for client libraries. This excludes designs where work processes
send UDP packets or any other use of networks, due to the system call overhead
it would involve. What is needed is something that is about as fast as normal instru‐
mentation, which means something that is as fast as local process memory but can be
accessed by other processes.

The approach taken is to use mmap. Each process has its own set of mmaped files
where it tracks its own metrics. At exposition time all the files are read and the
metrics combined. There is no locking between the instrumentation writing to the
files and the exposition reading it to ensure isolation metric values are aligned in
memory and a two-phase write is used when adding a new time series.

Counters (including summaries and histograms) must not go backward, so files
relating to counters are kept after a worker exits. Whether this makes sense for a
gauge depends on how it is used. For a metric like in-progress requests, you only want
it from live processes, whereas for the last time a request was processed, you want the
maximum across both live and dead processes. This can be configured on a per-gauge
basis.

70 | Chapter 4: Exposition

5 Gunicorn’s --max-requests flag is one example of such a limit.

Each process creates several files that must be read at exposition
time in prometheus_multiproc_dir. If your workers stop and start
a lot, this can make exposition slow when you have thousands of
files.
It is not safe to delete individual files as that could cause counters
to incorrectly go backward, but you can either try to reduce the
churn (for example, by increasing or removing a limit on the
number of requests workers handle before exiting5), or regularly
restarting the application and wiping the files.

These steps are for Gunicorn. The same approach also works with other Python
multiprocess setups, such as using the multiprocessing module.

OpenMetrics Support
The Python client library natively produces an OpenMetrics format. Prometheus
always prefers OpenMetrics when it is available. Prometheus uses an Accept HTTP
Header to indicate that it supports scraping the OpenMetrics format. You can simu‐
late this behavior with the -H option when using curl:

curl -v -H 'Accept: application/openmetrics-text; version=1.0.0;
 charset=utf-8' http://127.0.0.1:8000/metrics

Go
In Go, http.Handler is the standard interface for providing HTTP handlers, and
promhttp.Handler provides that interface for the Go client library. To demonstrate
how this works, place the code in Example 4-6 in a file called example.go.

Example 4-6. A simple Go program demonstrating instrumentation and exposition

package main

import (
 "log"
 "net/http"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

Go | 71

var (
 requests = promauto.NewCounter(
 prometheus.CounterOpts{
 Name: "hello_worlds_total",
 Help: "Hello Worlds requested.",
 })
)

func handler(w http.ResponseWriter, r *http.Request) {
 requests.Inc()
 w.Write([]byte("Hello World"))
}

func main() {
 http.HandleFunc("/", handler)
 http.Handle("/metrics", promhttp.Handler())
 log.Fatal(http.ListenAndServe(":8000", nil))
}

You can fetch dependencies and run this code in the usual way:

hostname $ go get -d -u github.com/prometheus/client_golang/prometheus
hostname $ go run example.go

This example uses promauto, which will automatically register your metric with the
default registry. If you do not wish to do so, you can use prometheus.NewCounter
instead and then use MustRegister in an init function:

func init() {
 prometheus.MustRegister(requests)
}

This is a bit more fragile, as it is easy for you to create and use the metric but forget
the MustRegister call.

Java
The Java client library is also known as the simpleclient. It replaced the original client,
which was developed before many of the current practices and guidelines around
how to write a client library were established. The Java client should be used for any
instrumentation for languages running on a Java Virtual Machine (JVM).

72 | Chapter 4: Exposition

HTTPServer
Similar to start_http_server in Python, the HTTPServer class in the Java client gives
you an easy way to get up and running (Example 4-7).

Example 4-7. A simple Java program demonstrating instrumentation and exposition

import io.prometheus.client.Counter;
import io.prometheus.client.hotspot.DefaultExports;
import io.prometheus.client.exporter.HTTPServer;

public class Example {
 private static final Counter myCounter = Counter.build()
 .name("my_counter_total")
 .help("An example counter.").register();

 public static void main(String[] args) throws Exception {
 DefaultExports.initialize();
 HTTPServer server = new HTTPServer(8000);
 while (true) {
 myCounter.inc();
 Thread.sleep(1000);
 }
 }
}

You should generally have Java metrics as class static fields, so that they are only
registered once.

The call to DefaultExports.initialize is needed for the various process and jvm
metrics to work. You should generally call it once in all of your Java applications, such
as in the main function. However, DefaultExports.initialize is idempotent and
thread safe, so additional calls are harmless.

In order to run the code in Example 4-7, you will need the simpleclient dependencies.
If you are using Maven, Example 4-8 is what the dependencies in your pom.xml
should look like.

Java | 73

Example 4-8. pom.xml dependencies for Example 4-7

 <dependencies>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient</artifactId>
 <version>0.16.0</version>
 </dependency>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient_hotspot</artifactId>
 <version>0.16.0</version>
 </dependency>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient_httpserver</artifactId>
 <version>0.16.0</version>
 </dependency>
 </dependencies>

Servlet
Many Java and JVM frameworks support using subclasses of HttpServlet in their
HTTP servers and middleware. Jetty is one such server, and you can see how to use
the Java client’s MetricsServlet in Example 4-9.

Example 4-9. A Java program demonstrating exposition using MetricsServlet and
Jetty

import io.prometheus.client.Counter;
import io.prometheus.client.exporter.MetricsServlet;
import io.prometheus.client.hotspot.DefaultExports;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHolder;
import java.io.IOException;

public class Example {
 static class ExampleServlet extends HttpServlet {
 private static final Counter requests = Counter.build()
 .name("hello_worlds_total")
 .help("Hello Worlds requested.").register();

 @Override
 protected void doGet(final HttpServletRequest req,

74 | Chapter 4: Exposition

 final HttpServletResponse resp)
 throws ServletException, IOException {
 requests.inc();
 resp.getWriter().println("Hello World");
 }
 }

 public static void main(String[] args) throws Exception {
 DefaultExports.initialize();

 Server server = new Server(8000);
 ServletContextHandler context = new ServletContextHandler();
 context.setContextPath("/");
 server.setHandler(context);
 context.addServlet(new ServletHolder(new ExampleServlet()), "/");
 context.addServlet(new ServletHolder(new MetricsServlet()), "/metrics");

 server.start();
 server.join();
 }
}

You will also need to specify the Java client as a dependency. If you are using Maven,
this will look like Example 4-10.

Example 4-10. pom.xml dependencies for Example 4-9

 <dependencies>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient</artifactId>
 <version>0.16.0</version>
 </dependency>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient_hotspot</artifactId>
 <version>0.16.0</version>
 </dependency>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient_servlet</artifactId>
 <version>0.16.0</version>
 </dependency>
 <dependency>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-servlet</artifactId>
 <version>11.0.11</version>
 </dependency>
 </dependencies>

Java | 75

6 Though for batch jobs that take more than a few minutes to run, it may also make sense to scrape them
normally over HTTP to help debug performance issues.

7 You may see it referenced as pgw in informal contexts.
8 For batch jobs such as database backups that are tied to a machine’s lifecycle, the Node Exporter textfile

collector is a better choice. This is discussed in “Textfile Collector” on page 134.

Pushgateway
Batch jobs are typically run on a regular schedule, such as hourly or daily. They start
up, do some work, and then exit. As they are not continuously running, Prometheus
can’t exactly scrape them.6 This is where the Pushgateway comes in.

The Pushgateway7 is a metrics cache for service-level batch jobs. Its architecture is
shown in Figure 4-1. It remembers only the last push that you make to it for each
batch job. You use it by having your batch jobs push their metrics just before they
exit. Prometheus scrapes these metrics from your Pushgateway and you can then alert
and graph them. Usually you run a Pushgateway beside a Prometheus.

Figure 4-1. The Pushgateway architecture

A service-level batch job is one where there isn’t really an instance label to apply to
it. That is to say it applies to all of one of your services, rather than being innately
tied to one machine or process instance.8 If you don’t particularly care where a batch
job runs but do care that it happens (even if it happens to currently be set up to
run via cron on one machine), it is a service-level batch job. Examples include a
per-datacenter batch job to check for bad machines, or one that performs garbage
collection across a whole service.

The Pushgateway is not a way to convert Prometheus from pull to
push. If, for example, there are several pushes between one Prome‐
theus scrape and the next, the Pushgateway will only return the last
push for that batch job. This is discussed further in “Networks and
Authentication” on page 368.

You can download the Pushgateway from the Prometheus download page. It is an
exporter that runs by default on port 9091, and Prometheus should be set up to
scrape it. However, you should also provide the honor_labels: true setting in
the scrape config, as shown in Example 4-11. This is because the metrics you push
to the Pushgateway should not have an instance label, and you do not want the

76 | Chapter 4: Exposition

https://oreil.ly/hoXpK

9 The Pushgateway explicitly exports empty instance labels for metrics without an instance label. Combined
with honor_labels: true, this results in Prometheus not applying an instance label to these metrics.
Usually, empty labels and missing labels are the same thing in Prometheus, but this is the exception.

10 Just like summaries and histograms, gauges have a time function decorator and context manager. It is
intended only for use in batch jobs.

Pushgateway’s own instance target label to end up on the metrics when Prometheus
scrapes them.9 honor_labels is discussed in “Label Clashes and honor_labels” on
page 166.

Example 4-11. prometheus.yml scrape config for a local Pushgateway

scrape_configs:
 - job_name: pushgateway
 honor_labels: true
 static_configs:
 - targets:
 - localhost:9091

You can use client libraries to push to the Pushgateway. Example 4-12 shows the
structure you would use for a Python batch job. A custom registry is created so that
only the specific metrics you choose are pushed. The duration of the batch job is
always pushed,10 and the time it ended is pushed only if the job is successful.

There are three different ways you can write to the Pushgateway. In Python these are
the push_to_gateway, pushadd_to_gateway, and delete_from_gateway functions:

push

Any existing metrics for this job are removed and the pushed metrics added. This
uses the PUT HTTP method under the covers.

pushadd

The pushed metrics override existing metrics with the same metric names for
this job. Any metrics that previously existed with different metric names remain
unchanged. This uses the POST HTTP method under the covers.

delete

The metrics for this job are removed. This uses the DELETE HTTP method
under the covers.

As Example 4-12 is using pushadd_to_gateway, the value of my_job_duration_sec
onds will always get replaced. However, my_job_last_success_seconds# will only
get replaced if there are no exceptions; it is added to the registry and then pushed.

Pushgateway | 77

Example 4-12. Instrumenting a batch job and pushing its metrics to a Pushgateway

from prometheus_client import CollectorRegistry, Gauge, pushadd_to_gateway

registry = CollectorRegistry()
duration = Gauge('my_job_duration_seconds',
 'Duration of my batch job in seconds', registry=registry)
try:
 with duration.time():
 # Your code here.
 pass

 # This only runs if there wasn't an exception.
 g = Gauge('my_job_last_success_seconds',
 'Last time my batch job successfully finished', registry=registry)
 g.set_to_current_time()
finally:
 pushadd_to_gateway('localhost:9091', job='batch', registry=registry)

You can see pushed data on the status page, as Figure 4-2 shows. An additional
metric push_time_seconds has been added by the Pushgateway because Prometheus
will always use the time at which it scrapes as the timestamp of the Pushgateway
metrics. push_time_seconds gives you a way to know the actual time the data was last
pushed. Another metric, push_failure_time_seconds, has been introduced, which
represents the last time when an update to this group in the Pushgateway failed.

Figure 4-2. The Pushgateway status page showing metrics from a push

You might have noticed in Figure 4-2 that the push is referred to as a group. You can
provide labels in addition to the job label when pushing, and all of these labels are

78 | Chapter 4: Exposition

11 The labels are flattened into the metric name. Tag (i.e., label) support for Graphite was only recently added in
1.1.0.

12 This works both ways. Other instrumentation libraries with an equivalent feature can have their metrics fed
into a Prometheus client library. This is discussed in “Custom Collectors” on page 219.

known as the grouping key. In Python this can be provided with the grouping_key
keyword argument. You would use this if a batch job was sharded or split up some‐
how. For example, if you have 30 database shards and each had its own batch job, you
might distinguish them with a shard label.

Once pushed, groups stay forever in the Pushgateway. You should
avoid using grouping keys that vary from one batch job run to
the next, as this will make the metrics difficult to work with and
cause performance issues. When decommissioning a batch job,
don’t forget to delete its metrics from the Pushgateway.

Bridges
Prometheus client libraries are not limited to outputting metrics in the Prometheus
format. There is a separation of concerns between instrumentation and exposition so
that you can process the metrics in any way you like.

For example, the Go, Python, and Java clients each include a Graphite bridge. A bridge
takes metrics output from the client library registry and outputs it to something
other than Prometheus. So the Graphite bridge will convert the metrics into a
form that Graphite can understand11 and write them out to Graphite, as shown in
Example 4-13.

Example 4-13. Using the Python GraphiteBridge to push to Graphite every 10 seconds

import time
from prometheus_client.bridge.graphite import GraphiteBridge

gb = GraphiteBridge(['graphite.your.org', 2003])
gb.start(10)
while True:
 time.sleep(1)

This works because the registry has a method that allows you to get a snapshot of all
the current metrics. This is CollectorRegistry.collect in Python, CollectorRegis
try.metricFamilySamples in Java, and Registry.Gather in Go. This is the method
that HTTP exposition uses, and you can use it too. For example, you could use this
method to feed data into another non-Prometheus instrumentation library.12

Bridges | 79

13 The Go client’s parser is the reference implementation.
14 Part of the Elasticsearch stack.

If you ever want to hook into direct instrumentation, you should
instead use the metrics output by a registry. Wanting to know every
time a counter is incremented does not make sense in terms of
a metrics-based monitoring system. However, the count of incre‐
ments is already provided for you by CollectorRegistry.collect
and works for custom collectors.

Parsers
In addition to a client library’s registry allowing you to access metric output, the Go13

and Python clients also feature a parser for the Prometheus and OpenMetrics exposi‐
tion formats. Example 4-14 only prints the samples, but you could feed Prometheus
metrics into other monitoring systems or into your local tooling.

Example 4-14. Parsing the Prometheus text format with the Python client

from prometheus_client.parser import text_string_to_metric_families

for family in text_string_to_metric_families(u"counter_total 1.0\n"):
 for sample in family.samples:
 print("Name: {0} Labels: {1} Value: {2}".format(*sample))

DataDog, InfluxDB, Sensu, and Metricbeat14 are some of the monitoring systems that
have components that can parse the text format. Using one of these monitoring sys‐
tems, you could take advantage of the Prometheus ecosystem without ever running
the Prometheus server. We believe that this is a good thing, as there is currently a lot
of duplication of effort between the various monitoring systems. Each of them has to
write similar code to support the myriad custom metric outputs provided by the most
commonly used software.

Text Exposition Format
The Prometheus text exposition format is relatively easy to produce and parse.
Although you should almost always rely on a client library to handle it for you, there
are cases such as with the Node Exporter textfile collector (discussed in “Textfile
Collector” on page 134) where you may have to produce it yourself.

We will be showing you version 0.0.4 of the text format, which has the content type
header:

Content-Type: text/plain; version=0.0.4; charset=utf-8

80 | Chapter 4: Exposition

In the simplest cases, the text format is just the name of the metric followed by a
64-bit floating-point number. Each line is terminated with a line-feed character (\n):

my_counter_total 14
a_small_gauge 8.3e-96

Metric Types
More complete Prometheus text format output would include the HELP and TYPE
of the metrics, as shown in Example 4-15. HELP is a description of what the metric
is, and should not generally change from scrape to scrape. TYPE is one of counter,
gauge, summary, histogram, or untyped. untyped is used when you do not know the
type of the metric, and is the default if no type is specified. It is invalid for you to
have a duplicate metric, so make sure all the time series that belong to a metric are
grouped together.

Example 4-15. Exposition format for a gauge, counter, summary, and histogram

HELP example_gauge An example gauge
TYPE example_gauge gauge
example_gauge -0.7
HELP my_counter_total An example counter
TYPE my_counter_total counter
my_counter_total 14
HELP my_summary An example summary
TYPE my_summary summary
my_summary_sum 0.6
my_summary_count 19
HELP latency_seconds An example histogram
TYPE latency_seconds histogram
latency_seconds_bucket{le="0.1"} 7
latency_seconds_bucket{le="0.2"} 18
latency_seconds_bucket{le="0.4"} 24
latency_seconds_bucket{le="0.8"} 28
latency_seconds_bucket{le="+Inf"} 29
latency_seconds_sum 0.6
latency_seconds_count 29

For histograms, the le labels have floating-point values and must be sorted. You
should note how the histogram buckets are cumulative, as le stands for less than
or equal to.

The _count must match the +Inf bucket, and the +Inf bucket must always be
present. Buckets should not change from scrape to scrape, as this will cause
problems for PromQL’s histogram_quantile function.

Text Exposition Format | 81

15 The null byte is a valid UTF-8 character.
16 Yes, there are two different sets of escaping rules within the text format. In OpenMetrics, this has been unified

to just one rule, as double quotes must be escaped in HELP as well.
17 Midnight January 1st 1970 UTC.

Labels
The histogram in the preceding example also shows how labels are represented.
Multiple labels are separated by commas, and it is OK to have a trailing comma
before the closing brace.

The ordering of labels does not matter, but it is a good idea to have the ordering
consistent from scrape to scrape. This will make writing your unit tests easier, and
consistent ordering ensures the best ingestion performance in Prometheus.

Here is an example of a summary in text format:

HELP my_summary An example summary
TYPE my_summary summary
my_summary_sum{foo="bar",baz="quu"} 1.8
my_summary_count{foo="bar",baz="quu"} 453
my_summary_sum{foo="blaa",baz=""} 0
my_summary_count{foo="blaa",baz="quu"} 0

It is possible to have a metric with no time series, if no children have been initialized,
as discussed in “Child” on page 91:

HELP a_counter_total An example counter
TYPE a_counter_total counter

Escaping
The text exposition format is encoded in UTF-8, and full UTF-815 is permitted in
both HELP and label values. Thus you need to use backslashes to escape characters
that would cause issues using backslashes. For HELP this is line feeds and backslashes.
For label values this is line feeds, backslashes, and double quotes.16 The format
ignores extra whitespace.

Here is an example demonstrating escaping in the text exposition format:

HELP escaping A newline \\n and backslash \\ escaped
TYPE escaping gauge
escaping{foo="newline \\n backslash \\ double quote \" "} 1

Timestamps
It is possible to specify a timestamp on a time series. It is an integer value in
milliseconds since the Unix epoch,17 and it goes after the value. Timestamps in the

82 | Chapter 4: Exposition

18 \r\n is the line ending on Windows, while on Unix, \n is used. Prometheus has a Unix heritage, so it uses \n.

exposition format should generally be avoided as they are only applicable in certain
limited use cases (such as federation) and come with limitations. Timestamps for
scrapes are usually applied automatically by Prometheus. It is not defined as to what
happens if you specify multiple lines with the same name and labels but different
timestamps.

This gauge has a timestamp:

HELP foo I'm trapped in a client library
TYPE foo gauge
foo 1 15100992000000

Timestamps are expressed in milliseconds since epoch in the Prom‐
etheus text format, while in OpenMetrics they are expressed in
seconds since epoch.

check metrics
Prometheus 2.0 uses a custom parser for efficiency. So, just because a /metrics end‐
point can be scraped doesn’t mean that the metrics are compliant with the format.

Promtool is a utility included with Prometheus that among other things can verify
that your metric output is valid and perform lint checks:

curl http://localhost:8000/metrics | promtool check metrics

Common mistakes include forgetting the line feed on the last line, using carriage
return and line feed rather than just line feed,18 and invalid metric or label names. As
a brief reminder, metric and label names cannot contain hyphens, and cannot start
with a number.

You now have a working knowledge of the text format. You can find the full specifica‐
tion in the official Prometheus documentation.

OpenMetrics
The OpenMetrics format is similar to the Prometheus text exposition format but
contains several incompatible changes with the Prometheus text format. Even if they
look similar, for a given set of metrics, the output they generate would generally be
different.

OpenMetrics | 83

https://oreil.ly/20X3R

We will be showing you version 1.0.0 of the OpenMetrics format, which has the
content type header:

Content-Type: application/openmetrics-text; version=1.0.0; charset=utf-8

In the simplest cases, the text format is just the name of the metric followed by a
64-bit floating-point number. Each line is terminated with a line-feed character (\n).
The file is terminated by # EOF:

my_counter_total 14
a_small_gauge 8.3e-96
EOF

Metric Types
The metric types supported by the Prometheus text exposition format are also sup‐
ported in OpenMetrics. In addition to counters, gauges, summaries, and histograms,
specific types have been added: StateSet, GaugeHistograms, and Info.

StateSets represent a series of related boolean values, also called a bitset. A value of 1
means true and 0 means false.

GaugeHistograms measure current distributions. The difference with histograms is
that buckets values and sum can go up and down.

Info metrics are used to expose textual information that does not change during
process lifetime. An application’s version, revision control commit, and the version of
a compiler are good candidates. The value of these metrics is always 1.

In addition to HELP and TYPE, metric families in OpenMetrics have an optional UNIT
metadata that specifies a metric’s unit.

All the types are demonstrated in Example 4-16.

Example 4-16. Exposition format for different types of metrics

HELP example_gauge An example gauge
TYPE example_gauge gauge
example_gauge -0.7
HELP my_counter An example counter
TYPE my_counter counter
my_counter_total 14
my_counter_created 1.640991600123e+09
HELP my_summary An example summary
TYPE my_summary summary
my_summary_sum 0.6
my_summary_count 19
HELP latency_seconds An example histogram
TYPE latency_seconds histogram
UNIT latency_seconds seconds

84 | Chapter 4: Exposition

19 Midnight January 1st 1970 UTC.

latency_seconds_bucket{le="0.1"} 7
latency_seconds_bucket{le="0.2"} 18
latency_seconds_bucket{le="0.4"} 24
latency_seconds_bucket{le="0.8"} 28
latency_seconds_bucket{le="+Inf"} 29
latency_seconds_sum 0.6
latency_seconds_count 29
TYPE my_build_info info
my_build_info{branch="HEAD",version="0.16.0rc1"} 1.0
TYPE my_stateset stateset
HELP my_stateset An example stateset
my_stateset{feature="a"} 1
my_stateset{feature="b"} 0
TYPE my_gaugehistogram gaugehistogram
HELP my_gaugehistogram An example gaugehistogram
my_gaugehistogram_bucket{le="1.0"} 0
my_gaugehistogram_bucket{le="+Inf"} 3
my_gaugehistogram_gcount 3
my_gaugehistogram_gsum 2
EOF

In OpenMetrics, as shown in Example 4-16, GaugeHistograms use distinct _gcount
and _gsum suffixes for counts and sums, differentiating them from Histograms’
_count and _sum.

Labels
The Histogram and GaugeHistogram in the preceding example also showed how
labels are represented. Multiple labels are separated by commas, but unlike in
the Prometheus wire format, commas before the closing brace are not allowed in
OpenMetrics.

Timestamps
It is possible to specify a timestamp on a time series. It is a float value in seconds since
the Unix epoch,19 and it goes after the value, as shown in this example:

HELP foo I'm trapped in a client library
TYPE foo gauge
foo 1 1.5100992e9

Timestamps are expressed in seconds since epoch in OpenMetrics,
while in the Prometheus text format they are expressed in milli‐
seconds since epoch.

OpenMetrics | 85

You now have a working knowledge of the OpenMetrics format. You can find the full
specification in the OpenMetrics GitHub repository.

We have mentioned labels a few times now. In the following chapter you’ll learn what
they are in detail.

86 | Chapter 4: Exposition

https://oreil.ly/EUEZa

1 Graphite would use periods rather than underscores.

CHAPTER 5

Labels

Labels are a key part of Prometheus, and one of the things that make it powerful. In
this chapter you will learn what labels are, where they come from, and how you can
add them to your own metrics.

What Are Labels?
Labels are key-value pairs associated with time series that, in addition to the metric
name, uniquely identify them. That’s a bit of a mouthful, so let’s look at an example.

If you had a metric for HTTP requests that was broken out by path, you might try
putting the path in the metric name, such as is common in Graphite:1

http_requests_login_total
http_requests_logout_total
http_requests_adduser_total
http_requests_comment_total
http_requests_view_total

These metrics would be difficult for you to work with in PromQL. In order to
calculate the total requests, you would either need to know every possible HTTP
path or do some form of potentially expensive matching across all metric names.
Accordingly, this is an antipattern you should avoid. Instead, to handle this common
use case, Prometheus has labels. In the preceding case you might use a path label:

http_requests_total{path="/login"}
http_requests_total{path="/logout"}
http_requests_total{path="/adduser"}
http_requests_total{path="/comment"}
http_requests_total{path="/view"}

87

2 Or prefixes to metric names.
3 When using the Pushgateway, target labels may come from the application, as each Pushgateway group is in

a way a monitoring target. Depending on who you ask, this is either a feature or a limitation of push-based
monitoring.

4 In Python be careful not to do labelnames='path', which is the same as labelnames=['p', 'a', 't',
'h']. This is one of the more common gotchas in Python.

You can then work with the http_requests_total metric with all its path labels as
one. With PromQL you could get an overall aggregated request rate, the rate of just
one of the paths, or what proportion each request is of the whole.

You can also have metrics with more than one label. There is no ordering on labels, so
you can aggregate by any given label while ignoring the others, or even aggregate by
several of the labels at once.

Instrumentation and Target Labels
Labels come from two sources, instrumentation labels and target labels. When you
are working in PromQL there is no difference between the two, but it’s important to
distinguish between them in order to get the most benefits from labels.

Instrumentation labels, as the name indicates, come from your instrumentation. They
are about things that are known inside your application or library, such as the type of
HTTP requests it receives, which databases it talks to, and other internal specifics.

Target labels identify a specific monitoring target; that is, a target that Prometheus
scrapes. A target label relates more to your architecture and may include which
application it is, what datacenter it lives in, if it is in a development or production
environment, which team owns it, and of course, which exact instance of the applica‐
tion it is. Target labels are attached by Prometheus as part of the process of scraping
metrics.

Different Prometheus servers run by different teams may have different views of what
a “team,” “region,” or “service” is, so an instrumented application should not try to
expose such labels itself. Accordingly, you will not find any features in client libraries
to add labels2 across all metrics of a target. Target labels come from service discovery
and relabeling3 and are discussed further in Chapter 8.

Instrumentation
Let’s extend Example 3-3 to use a label. In Example 5-1 you can see labelnames=['pa
th'] in the definition,4 indicating that your metric has a single label called path.
When using the metric in instrumentation you must add a call to the labels method
with an argument for the label value.5

88 | Chapter 5: Labels

5 In Java the method is also labels, and the Go equivalent is WithLabelValues.

Example 5-1. A Python application using a label for a counter metric

import http.server
from prometheus_client import start_http_server, Counter

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.',
 labelnames=['path'])

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.labels(self.path).inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

if __name__ == "__main__":
 start_http_server(8000)
 server = http.server.HTTPServer(('localhost', 8001), MyHandler)
 server.serve_forever()

If you visit http://localhost:8001/ and http://localhost:8001/foo, then on the /metrics
page at http://localhost:8000/metrics you will see the time series for each of the paths:

HELP hello_worlds_total Hello Worlds requested.
TYPE hello_worlds_total counter
hello_worlds_total{path="/favicon.ico"} 6.0
hello_worlds_total{path="/"} 4.0
hello_worlds_total{path="/foo"} 1.0

Label names are limited in terms of what characters you can use. They should begin
with a letter (a–z or A–Z) and be followed with letters, numbers, and underscores.
This is the same as for metric names, except without colons.

Unlike metric names, label names are not generally namespaced. However, you
should take care when defining instrumentation labels to avoid labels likely to be
used as target labels, such as env, cluster, service, team, zone, and region. We also
recommend avoiding type as a label name, as it is very generic. Snake case is the
convention for label names.

The instance and job label names are used natively by Prometheus, so we don’t
recommend them either, as they will collide with the target labels.

Label values can be any UTF-8 characters. You can also have an empty label value, but
this can be a little confusing in the Prometheus server as at first glance it looks the
same as not having that label.

Instrumentation | 89

6 This is different from the __name__ in the Python code examples.

Reserved Labels and __name__
Labels can start with underscores, but you should avoid such labels. Label names
beginning with a double underscore __ are reserved.

Internally in Prometheus the metric name is just another label called __name__.6

The expression up is syntactic sugar for {__name__="up"}, and there are also special
semantics with PromQL operators, as discussed in “Vector Matching” on page 265.

Metric
As you may have noticed, the word metric is a bit ambiguous and means different
things depending on context. It could refer to a metric family, a child, or a time series:

HELP latency_seconds Latency in seconds.
TYPE latency_seconds summary
latency_seconds_sum{path="/foo"} 1.0
latency_seconds_count{path="/foo"} 2.0
latency_seconds_sum{path="/bar"} 3.0
latency_seconds_count{path="/bar"} 4.0

latency_seconds_sum{path="/bar"} is a time series, distinguished by a name and
labels. This is what PromQL works with.

latency_seconds{path="/bar"} is a child, and is what the return value of labels()
in the Python client represents. For a summary it contains both the _sum and _count
time series with those labels.

latency_seconds is a metric family. It is only the metric name and its associated type.
This is the metric definition when using a client library.

For a gauge metric with no labels, the metric family, child, and time series are the
same.

Multiple Labels
You can specify any number of labels when defining a metric, and then the values in
the same order in the labels call (Example 5-2).

Example 5-2. hello_worlds_total has path and method labels

REQUESTS = Counter('hello_worlds_total',
 'Hello Worlds requested.',
 labelnames=['path', 'method'])

90 | Chapter 5: Labels

7 For this reason you should also resist the temptation to write a facade or wrapper around a Prometheus client
library that takes the metric name as an argument, as that would also incur this lookup cost. It is cheaper,
simpler, and better semantically to have a file-level variable track the address of the metric object rather than
having to look it up all the time.

class MyHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):
 REQUESTS.labels(self.path, self.command).inc()
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b"Hello World")

Python and Go also allow you to supply a map with both label names and values,
though the label names must still match those in the metric definitions. This can
make it harder to mix up the order of your arguments, but if that is a real risk, then
you may have too many labels.

It is not possible to have varying label names for a metric, and client libraries will
prevent it. When working with metrics it is important that you know what labels
you have in play, so you must know your label names in advance when doing direct
instrumentation. If you don’t know your labels, you probably want a logs-based
monitoring tool for that specific use case instead.

Child
The value returned to you by the labels method in Python is called a child. You
can store this child for later use, which saves you from having to look it up at
each instrumentation event, saving time in performance-critical code that is called
hundreds of thousands of times a second. In benchmarks with the Java client, we
have found that with no contention the child lookup took 30 ns, while the actual
increment took 12 ns.7

A common pattern, when an object refers to only one child of a metric, is to call
labels once and then store that in the object, as shown in Example 5-3.

Example 5-3. A simple Python cache that stores the child in each named cache

from prometheus_client import Counter

FETCHES = Counter('cache_fetches_total',
 'Fetches from the cache.',
 labelnames=['cache'])

class MyCache(object):
 def __init__(self, name):
 self._fetches = FETCHES.labels(name)
 self._cache = {}

Instrumentation | 91

8 This happens automatically for metrics with no labels.

 def fetch(self, item):
 self._fetches.inc()
 return self._cache.get(item)

 def store(self, item, value):
 self._cache[item] = value

Another place where you will run into children is in initializing them. Children
only appear on the /metrics page after you call labels.8 This can cause issues in
PromQL, as time series that appear and disappear can be very challenging to work
with. Accordingly, where possible you should initialize children at startup, such as in
Example 5-4, although if you follow the pattern in Example 5-3, you get this for free.

Example 5-4. Initializing children of a metric at application startup

from prometheus_client import Counter

REQUESTS = Counter('http_requests_total',
 'HTTP requests.',
 labelnames=['path'])
REQUESTS.labels('/foo')
REQUESTS.labels('/bar')

When using Python decorators, you may also use labels without immediately calling
a method on the return value, as shown in Example 5-5.

Example 5-5. Using a decorator with labels in Python

from prometheus_client import Summary

LATENCY = Summary('http_requests_latency_seconds',
 'HTTP request latency.',
 labelnames=['path'])

foo = LATENCY.labels('/foo')
@foo.time()
def foo_handler(params):
 pass

92 | Chapter 5: Labels

Client libraries usually offer methods to remove children from a
metric. You should only consider using these for unit tests. From
a PromQL semantic standpoint, once a child exists it should con‐
tinue to exist until the process dies, otherwise functions such as
rate may return undesirable results. These methods also invalidate
previous values returned from labels.

Aggregating
Now that your instrumentation is bursting with labels, let’s actually use them in
PromQL. We will be going into more detail about aggregation operators in Chap‐
ter 14, but want to give you a taste of the power of labels now.

In Example 5-2, hello_worlds_total has path and method labels. As
hello_worlds_total is a counter, you must first use the rate function. Table 5-1
is one possible output, showing results for two application instances with different
HTTP paths and methods.

Table 5-1. Output of rate(hello_worlds_total[5m])
{job="myjob”,instance="localhost:1234”,path="/foo”,method="GET"} 1

{job="myjob”,instance="localhost:1234”,path="/foo”,method="POST"} 2

{job="myjob”,instance="localhost:1234”,path="/bar”,method="GET"} 4

{job="myjob”,instance="localhost:5678”,path="/foo”,method="GET"} 8

{job="myjob”,instance="localhost:5678”,path="/foo”,method="POST"} 16

{job="myjob”,instance="localhost:5678”,path="/bar”,method="GET"} 32

This can be a little hard for you to consume, especially if you have far more time
series than in this simple example. Let’s start by aggregating away the path label. You
do this using the sum aggregation, as you want to add samples together. The without
clause indicates what label you want to remove. This gives you the expression
sum without(path)(rate(hello_worlds_total[5m])) that produces the output in
Table 5-2.

Table 5-2. Output of sum without(path)(rate(hello_worlds_total[5m]))
{job="myjob”,instance="localhost:1234”,method="GET"} 5

{job="myjob”,instance="localhost:1234”,method="POST"} 2

{job="myjob”,instance="localhost:5678”,method="GET"} 40

{job="myjob”,instance="localhost:5678”,method="POST"} 16

It is not uncommon for you to have tens or hundreds of instances, and in our
experience, looking at individual instances on dashboards breaks down somewhere

Aggregating | 93

9 Which is how an enum in a language like C works.

around three to five. You can expand the without clause to include the instance
label, which gives the output shown in Table 5-3. As you would expect from the
values in Table 5-1, 1 + 4 + 8 + 32 = 45 requests per second for GET and 2 + 16 = 18
requests per second for POST.

Table 5-3. Output of sum without(path, instance)(rate(hello_worlds_total[5m]))
{job="myjob”,method="GET"} 45

{job="myjob”,method="POST"} 18

Labels are not ordered in any way, so just as you can remove path you can also
remove method, as seen in Table 5-4.

Table 5-4. Output of sum without(method, instance)(rate(hello_worlds_total[5m]))
{job="myjob”,path="/foo"} 27

{job="myjob”,path="/bar"} 36

There is also a by clause that keeps only the labels you specify.
without is preferred because if there are additional labels such as
env or region across all of a job, they will not be lost. This helps
when you are sharing your rules with others.

Label Patterns
Prometheus only supports 64-bit floating-point numbers as time series values, not
any other data types such as strings. But label values are strings, and there are
certain limited use cases where it is OK to (ab)use them without getting too far into
logs-based monitoring.

Enum
The first common case for strings is enums. For example, you may have a resource
that could be in exactly one of the states of STARTING, RUNNING, STOPPING, or
TERMINATED.

You could expose this as a gauge with STARTING being 0, RUNNING being 1, STOPPING
being 2, and TERMINATED being 3.9 But this is a bit tricky to work with in PromQL.
The numbers 0–3 are a bit opaque, and there is not a single expression you can write
to tell you what proportion of the time your resource spent STARTING.

94 | Chapter 5: Labels

10 It is likely that future versions of the client libraries will offer you utilities to make working with enums easier.
OpenMetrics, for example, currently plans on having a state set type, of which enums are a special case.

The solution to this is to add a label for the state to the gauge, with each potential
state becoming a child. When exposing a boolean value in Prometheus, you should
use 1 for true and 0 for false. Accordingly, one of the children will have the value 1
and all the others 0, which would produce metrics like those in Example 5-6.

Example 5-6. An enum example; the blaa resource is in the RUNNING state

HELP gauge The current state of resources.
TYPE gauge resource_state
resource_state{resource_state="STARTING",resource="blaa"} 0
resource_state{resource_state="RUNNING",resource="blaa"} 1
resource_state{resource_state="STOPPING",resource="blaa"} 0
resource_state{resource_state="TERMINATED",resource="blaa"} 0

Because the 0s are always present, the PromQL expression avg_over_time

(resource_state[1h]) would give you the proportion of time spent in each
state. You could also aggregate by resource_state using sum without(resource)
(resource_state) to see how many resources are in each state.

To produce such metrics you could use set on a gauge, but that would bring with it
race conditions. A scrape might see a 1 on either zero or two of the states, depending
on when exactly it happened. You need some isolation so that the gauge isn’t exposed
in the middle of an update.

The solution to this is to use a custom collector, which will be discussed further in
“Custom Collectors” on page 219. To give you an idea of how to go about this, you
can find a basic implementation in Example 5-7. In reality you would usually add
code like this into an existing class rather than having a standalone class.10

Example 5-7. A custom collector for a gauge used as an enum

from threading import Lock
from prometheus_client.core import GaugeMetricFamily, REGISTRY

class StateMetric(object):
 def __init__(self):
 self._resource_states = {}
 self._STATES = ["STARTING", "RUNNING", "STOPPING", "TERMINATED",]
 self._mutex = Lock()

 def set_state(self, resource, state):
 with self._mutex:
 self._resource_states[resource] = state

Label Patterns | 95

11 Brian’s article was the first place this technique was documented.

 def collect(self):
 family = GaugeMetricFamily("resource_state",
 "The current state of resources.",
 labels=["resource_state", "resource"])
 with self._mutex:
 for resource, state in self._resource_states.items():
 for s in self._STATES:
 family.add_metric([s, resource], 1 if s == state else 0)
 yield family

sm = StateMetric()
REGISTRY.register(sm)

Use the StateMetric.
sm.set_state("blaa", "RUNNING")

Enum gauges are normal gauges that follow all the usual gauge semantics, so no
special metric suffix is needed.

Note that there are limits to this technique that you should be aware of. If your
number of states combined with the number of other labels gets too high, perfor‐
mance issues due to the volume of samples and time series can result. You could try
combining similar states together, but in the worst case you may have to fall back
to using a gauge with values such as 0–3 to represent the enum, and deal with the
complexity that brings to PromQL. This is discussed further in “Cardinality” on page
99.

Info
The second common case for strings are info metrics, which you may also find
called the machine roles approach for historical reasons.11 Info metrics are useful for
annotations such as version numbers and other build information that would be
useful to query on, but it doesn’t make sense to use them as target labels, which apply
to all metrics from a target (discussed in “Target Labels” on page 153) that applies to
every metric from a target.

The convention that has emerged is to use a gauge with the value 1 and all the strings
you’d like to have annotating the target as labels. The gauge should have the suffix
_info. This was shown in Figure 3-2 with the python_info metric, which would look
something like Example 5-8 when exposed.

96 | Chapter 5: Labels

https://oreil.ly/eu_jZ

12 More formally, 1 is the identity element for multiplication.

13 In this case it is only one-to-one as there is only one up time series per python_info; however, you could use
same expression for metrics with multiple time series per target.

Example 5-8. The python_info metric the Python client exposes by default

HELP python_info Python platform information
TYPE python_info gauge
python_info{implementation="CPython",major="3",minor="5",patchlevel="2",
 version="3.5.2"} 1.0

To produce this in Python you could use either direct instrumentation or a custom
collector. Example 5-9 takes the direct instrumentation route, and also takes advan‐
tage of the ability to pass in labels as keyword arguments with the Python client.

Example 5-9. An info metric using direct instrumentation

from prometheus_client import Info

version_info = {
 "implementation": "CPython",
 "major": "3",
 "minor": "5",
 "patchlevel": "2",
 "version": "3.5.2",
}

INFO = Info("my_python", "Python platform information")
INFO.labels(version_info)

An info metric can be joined to any other metric using the multiplication operator
and the group_left modifier. Any operator can be used to join the metrics, but as
the value of the info metric is 1, multiplication won’t change the value of the other
metric.12

The value of 1 is inferred by the type of metric, in this case Info.

To add the version label from python_info to all up metrics, you would use the
PromQL expression:

 up
* on (instance, job) group_left(version)
 python_info

The group_left(version) indicates that this is a many-to-one match13 and that the
version label should be copied over from python_info into all up metrics that have
the same job and instance labels. We will look at group_left in more detail in
“Many-to-One and group_left” on page 268.

Label Patterns | 97

14 Target labels for up and any additional instrumentation labels added to python_info in the future.
15 Unless the label is a target label.

You can tell from looking at this expression that the output will have the labels of
the up metric, with a version label added. Adding all the labels from python_info
is not possible, as you could potentially have unknown labels from both sides of the
expression,14 which is not workable semantically. It is important to always know what
labels are in play.

Breaking Changes and Labels
If you add or remove a label from instrumentation, it is always a breaking change.
Removing a label removes a distinction a user may have been depending on. Adding a
label breaks aggregation that uses the without clause.

The one exception to this is for info metrics. For those, the PromQL expressions are
constructed such that extra labels aren’t a problem, so it’s safe for you to add labels to
info metrics.

Info metrics also have a value of 1 so it is easy to calculate how many time series have
each label value using sum. The number of application instances running each version
of Python would be sum by (version)(python_info). If it were a different value
such as 0, a mix of sum and count would be required in your aggregation hierarchy,
which would be both more complicated and error prone.

When to Use Labels
For a metric to be useful, you need to be able to aggregate it somehow. The rule
of thumb is that either summing or averaging across a metric should produce a
meaningful result. For a counter of HTTP requests split by path and method, the sum
is the total number of requests. For a queue, combining the items in it and its size
limit into one metric would not make sense, as neither summing nor averaging it
produces anything useful.

One hint that an instrumentation label is not useful is if any time you use the metric
you find yourself needing to specify that label in PromQL.15 In such a case you should
probably move the label to be in the metric name instead.

Another thing to avoid is having a time series that is a total of the rest of the metric,
such as:

98 | Chapter 5: Labels

some_metric{label="foo"} 7
some_metric{label="bar"} 13
some_metric{label="total"} 20

or:

some_metric{label="foo"} 7
some_metric{label="bar"} 13
some_metric{} 20

Both of these break aggregation with sum in PromQL as you’d be double counting.
PromQL already provides you with the ability to calculate this aggregate.

Table Exception
Astute readers probably noticed that summary metric quantiles break the rule about
the sum or average being meaningful because you can’t do math on quantiles.

This is what we call the table exception, where even though you can’t do math across a
metric, it’s better to (ab)use a label than to have to do regexes against a metric name.
Regexes on metric names are a very bad smell, and should never be used in graphs or
alerts.

For you, this exception should only ever come up when writing exporters, never for
direct instrumentation. For example, you might have an unknown mix of voltages,
fan speeds, and temperatures coming from hardware sensors. As you lack the infor‐
mation needed to split them into different metrics, the only thing you can really do
is shove them all into one metric and leave it to the person consuming the metric to
interpret it.

The label names used for a metric should not change during the
lifetime of an application process. If you feel the need for this, you
probably want a logs-based monitoring solution for that use case.

Cardinality
Don’t go too far when using labels. Monitoring is a means to an end, so more time
series and more monitoring aren’t always better. For a monitoring system, whether
you run it yourself on-premises or pay a company to run it for you in the cloud,
every time series and sample has both a resource cost and a human cost in terms of
ongoing operations to keep the monitoring system up and running.

In this context we would like to talk about cardinality, which in Prometheus is the
number of time series you have. If your Prometheus is provisioned to handle, say, 10

When to Use Labels | 99

16 It is possible to have more, but it’s a reasonably conservative upper bound.

17 So 10 buckets, plus the _sum and _count.

18 With only the _sum and _count time series, quantileless summary metrics are a very cheap way to get an idea
of latency.

million time series, how would you best spend those? At what point do you move
certain use cases to logs-based monitoring instead?

The way we look at it is to assume that someone running your code has a large
setup with a thousand instances of a particular application.16 Adding a simple counter
metric to an obscure subsystem will add a thousand time series to your Prometheus,
which is 0.01% of its capacity. That is basically free, and it might help you debug a
weird problem one day. Across all of the application and its libraries, you might have
a hundred of these obscure metrics, which total to 1% of your monitoring capacity
and is still quite cheap even given the rarity that you’ll likely use any one of them.

Now consider a metric with a label with 10 values and in addition was a histogram
that by default has 12 time series.17 That is a 120 series, or 1.2% of your monitoring
capacity. That this is a good trade-off is less clear. It might be OK to have a handful
of these, but you might also consider switching to a quantile-less summary metric
instead.18

The next stage is where things get a little troublesome. If a label already has a
cardinality of 10, there is a good chance that it will only increase over time as new
features are introduced to your application. A cardinality of 10 today might be 15
next year, and 200 might change to 300. Increased traffic from users usually means
more application instances. If you have more than one of these expanding labels
on a metric, the impact is compounded, resulting in a combinatorial explosion of
time series. And this is just one of the ever-growing applications that Prometheus is
monitoring.

In this way cardinality can sneak up on you. It is usually obvious that email addresses,
customers, and IP addresses are poor choices for label values on cardinality grounds.
It is less clear that the HTTP path is going to be a problem. Given that the HTTP
request metric is regularly used, removing labels from it, switching away from a his‐
togram, or even reducing the number of buckets in the histogram can be challenging
politically.

The rule of thumb we use is that the cardinality of an arbitrary metric on one
application instance should be kept below 10. It is also OK to have a handful of
metrics that have a cardinality around 100, but you should be prepared to reduce
metric cardinality and rely on logs as that cardinality grows.

100 | Chapter 5: Labels

19 It would also make it harder to pinpoint the metrics responsible for your resource usage.

The handful of a hundred cardinality metrics per Prometheus pre‐
sumes a thousand instances exposing such cardinality. If you are
100% certain that you will not reach these numbers, such as with
applications you will run exactly one of, you can adjust the rule of
thumb accordingly.

There is a common pattern that we have seen when Prometheus is introduced to an
organization. It is common for organizations to experience a learning curve when
introducing Prometheus. At some point it clicks, and they start to grasp the power
of labels. It usually follows quickly that your Prometheus has performance issues due
to label cardinality. We advise talking about the limitations of cardinality with your
users early on, and also consider using sample_limit as an emergency safety valve
(see “Reducing Load” on page 376).

The 10 biggest metrics in a Prometheus commonly constitute over half of its resource
usage, and this is almost always due to label cardinality. There is sometimes confusion
that if the issue is the number of label values, wouldn’t moving the label value into the
metric name fix the problem? As the underlying resource constraint is actually time
series cardinality (which manifests due to label values), moving label values to the
metric name doesn’t change the cardinality, it just makes the metrics harder to use.19

Now that you can add metrics to your applications and know some basic PromQL
expressions, in the following chapter we will show you how you can create dash‐
boards in Grafana.

When to Use Labels | 101

CHAPTER 6

Dashboarding with Grafana

When you get an alert or want to check on the current performance of your systems,
dashboards will be your first port of call. The expression browser that you have seen
up to now is fine for ad hoc graphing and when you need to debug your PromQL, but
it’s not designed to be used as a dashboard.

What do we mean by dashboard? A set of graphs, tables, and other visualizations
of your systems. You might have a dashboard for global traffic, which services are
getting how much traffic, and with what latency. For each of those services you
would likely have a dashboard of its latency, errors, request rate, instance count,
CPU usage, memory usage, and service-specific metrics. Drilling down, you could
have a dashboard for particular subsystems or each service, or a garbage collection
dashboard that can be used with any Java application.

Grafana is a popular tool with which you can build such dashboards for many
different monitoring and nonmonitoring systems, including Graphite, InfluxDB,
Jaeger, Elasticsearch, and PostgreSQL. It is the recommended tool for you to create
dashboards when using Prometheus, and is continuously improving its Prometheus
support.

In this chapter we introduce using Grafana with Prometheus, extending the Prome‐
theus and Node Exporter you set up in Chapter 2.

103

1 Grafana by default reports anonymous usage statistics. This can be disabled with the reporting_enabled
setting in its configuration file.

2 This is the same templating language that is used for alert templating, with some minor differences in
available functionality.

3 A way to have filesystems shared across containers over time, as by default a Docker container’s storage is
specific to that container. Volume mounts can be specified with the -v flag to docker run.

Promdash and Console Templates
Originally the Prometheus project had its own dashboarding tool called Promdash.
Even though Promdash was better at the time for Prometheus use cases, the Prom‐
etheus developers decided in 2016 to rally around Grafana rather than have to
continue to work on their own dashboarding solution. These days, Prometheus is a
first-class plug-in in Grafana, and also one of the most popular.1

There is a feature included with Prometheus called console templates that can be used
for dashboards. Unlike Promdash and Grafana, which store dashboards in relational
databases, it is built right into Prometheus and is configured from the filesystem. It
allows you to render web pages using Go’s templating language2 and easily keep your
dashboards in source control. Console templates are a very raw feature upon which
you could build a dashboard system, and as such it is recommended only for niche
use cases and advanced users.

Installation
You can download Grafana from the Grafana website. The site includes installation
instructions, but if you’re using Docker, for example, you would use:

docker run -d --name=grafana --net=host grafana/grafana:9.1.6

Note that this doesn’t use a volume mount,3 so it will store all state inside the
container.

We use Grafana 9.1.6 here. You can use a newer version but be aware that what you
see will likely differ slightly.

Once Grafana is running you should be able to access it in your browser at http://
localhost:3000/, and you will see a login screen like the one in Figure 6-1.

104 | Chapter 6: Dashboarding with Grafana

https://oreil.ly/ANoWC

Figure 6-1. Grafana login screen

Log in with the default username of admin and the default password, which is also
admin. You will be prompted to change your password, which we recommend you to
do.

You should then see the Home Dashboard, as shown in Figure 6-2. We have switched
to the Light theme in the Org Settings in order to make things easier to see in our
screenshots.

Installation | 105

4 The Access server setting has Grafana make the requests to your Prometheus. By contrast, the direct setting
has your browser make the request. Direct setting is deprecated and will be removed in future Grafana
releases.

Figure 6-2. Grafana Home Dashboard on a fresh install

Data Source
Grafana connects to Prometheus through data sources to fetch information used
for graphs. A variety of data source types are supported out of the box, including
InfluxDB, PostgreSQL, and of course, Prometheus. You can have many data sources
of the same type, and usually you would have one per running Prometheus. A
Grafana dashboard can have graphs from a variety of sources, and you can even mix
sources in a time series panel.

More recent versions of Grafana make it easy to add your first data source. Click
“Add your first data source” and add a data source with a Name of Prometheus, a
Type of Prometheus, and a URL of http://localhost:9090 (or whatever other URL your
Prometheus from Chapter 2 is listening on). The form should look like Figure 6-3.
Leave all other settings at their defaults, and finally click Save & Test at the bottom of
the form. Depending on your screen size, you might need to scroll to see the buttons.
If it works, you will get a message that the data source is working. If you don’t, check
that the Prometheus is indeed running and that it is accessible from Grafana.4

106 | Chapter 6: Dashboarding with Grafana

Figure 6-3. Adding a Prometheus data source to Grafana

Dashboards and Panels
Go again to http://localhost:3000/ in your browser, and this time click “Create your
first dashboard,” which will bring you to a page that looks like Figure 6-4.

Dashboards and Panels | 107

Figure 6-4. A new Grafana dashboard

From here you can click “Add a new panel” and select the first panel you’d like to add.
Panels are rectangular areas containing a graph, table, or other visual information.
You can add new panels beyond the first with the “Add panel” button, which is the
button on the top row with the orange plus sign. Panels are organized within a grid
system, and can be rearranged using drag-and-drop.

After making any changes to a dashboard or panels, if you want
them to be remembered you must explicitly save them. You can do
this with the save button at the top of the page or using the Ctrl-S
keyboard shortcut.

You can access the dashboard settings, such as its name, using the gear icon at the top.
From the settings menu you can also duplicate dashboards using Save As, which is
handy when you want to experiment with a dashboard.

108 | Chapter 6: Dashboarding with Grafana

5 The worst case of this we have heard of weighed in at over 1,000 graphs.

6 You can also use the e keyboard shortcut to open the editor while hovering over the panel. You can press ? to
view a full list of keyboard shortcuts.

Avoiding the Wall of Graphs
It is not unusual to end up with multiple dashboards per service you run. It is easy
for dashboards to gradually get bloated with too many graphs, making it challenging
for you to interpret what is actually going on. To mitigate this you should try to
avoid dashboards that serve more than one team or purpose, and instead give them a
dashboard each.

The more high-level a dashboard is, the fewer rows and panels it should have. A
global overview should fit on one screen and be understandable at a distance. Dash‐
boards commonly used for on call might have a row or two more than that, whereas a
dashboard for in-depth performance tuning by experts might run to several screens.

Why do we recommend that you limit the amount of graphs on each of your
dashboards? The answer is that every graph, line, and number on a dashboard makes
it harder to understand, due to cognitive load to understand everything you are
looking at. This is particularly relevant when you are on call and handling alerts.
When you are stressed, need to act quickly, and are possibly only half awake, having
to remember the subtler points of what each graph on your dashboard means is not
going to aid you in terms of either response time or taking an appropriate action.

To give an extreme example, one service Brian worked on had a dashboard (singular)
with over 600 graphs.5 This was hailed as superb monitoring, due to the vast wealth
of data on display. The sheer volume of data meant he was never able to get his head
around that dashboard, plus it took rather a long time to load. He likes to call this
style of dashboarding the Wall of Graphs antipattern.

You should not confuse having lots of graphs with having good monitoring. Moni‐
toring is ultimately about outcomes, such as faster incident resolution and better
engineering decisions, not pretty graphs.

Time Series Panel
The Time series panel is the main panel you will be using. As the name indicates, it
displays time series. As shown in Figure 6-4, click the “Add a new panel” button to
add a Time series panel. You are directly entering editing mode for this new panel. To
configure it again later, click Panel Title and then Edit, as shown in Figure 6-5.6

Time Series Panel | 109

7 The A indicates that it is the first query.

Figure 6-5. Opening the editor for a Time series panel

The panel editor will open on the Query tab. In the text box beside A,7 enter
process_resident_memory_bytes for the query expression, as shown in Figure 6-6,
and then click “Run queries.” You will see a graph of memory usage similar to what
Figure 2-7 showed when the same expression was used in the expression browser.

Figure 6-6. The expression process_resident_memory_bytes in the graph editor

110 | Chapter 6: Dashboarding with Grafana

Grafana offers more than the expression browser. You can configure the legend to
display something other than the full-time series name. Select Custom in the Legend
dropdown and type {{job}} in the text box. On the right side, under “Standard
options,” change the unit to “data/bytes (IEC).” Under “Panel options,” change the
Title to Memory Usage. The graph will now look something like Figure 6-7, with a
more useful legend, appropriate units on the axis, and a title.

Figure 6-7. Memory Usage graph with custom legend, title, and axis units configured

These are the settings you will want to configure on virtually all of your graphs,
but this is only a small taste of what you can do with graphs in Grafana. You can
configure colors, draw style, tool tips, stacking, filling, and even include metrics from
multiple data sources.

Don’t forget to save the panel and dashboard before continuing! Click Apply, then
save the dashboard. New dashboard is a special dashboard name for Grafana, so you
should choose something more memorable.

Time Controls
You may have noticed Grafana’s time controls on the top right of the page. By
default, it should say “Last 6 hours.” Clicking the time controls will show the page in
Figure 6-8 where you can choose a time range. The dropdown next to the circular
arrow in Figure 6-9 is where you can choose how often to refresh. The time controls
apply to an entire dashboard at once, though you can also configure some overrides
on a per-panel basis.

Time Series Panel | 111

Figure 6-8. Grafana’s time control menu

Figure 6-9. Grafana’s refresh interval menu

112 | Chapter 6: Dashboarding with Grafana

8 The dropdown should display Time series by default.

Aliasing
As your graphs refresh you may notice that the shape can change, even though the
underlying data hasn’t changed. This is a signal processing effect called aliasing. You
may already be familiar with aliasing from the graphics in first-person video games,
where the rendering artifacts of a distant object change and may seem to flicker as
you walk toward it.

The same thing is happening here. Each rendering of the data is at a slightly different
time, so functions such as rate will calculate slightly different results. None of these
results are wrong, they’re just different approximations of what is going on.

This is a fundamental limitation of metrics-based monitoring, and any other system
that takes samples, and is related to the Nyquist-Shannon sampling theorem. You can
mitigate aliasing by increasing the frequency of your scrapes and evaluations, but
ultimately to get a 100% accurate view of what is going on you will need logs, as logs
have an exact record of every single event.

Note that recent versions of Grafana implement solutions that tweak queries to
Prometheus to limit this result as much as possible.

Stat Panel
The Stat panel displays single values of a time series. It can also show a Prometheus
label value.

We will start this example by adding a time series value. Click Apply (the back arrow
on the top right) to return from the Time series panel to the dashboard view. Click
the “Add panel” button and select “Stat panel” from the dropdown on the right.8 For
the query expression on the Metrics tab, use prometheus_tsdb_head_series, which
is (roughly speaking) the number of different time series Prometheus is ingesting.
By default the Stat panel will calculate the last value of the time series over the
dashboard’s time range. The default text can be a bit small, so change the Font
Size to 200%. Under Panel options, change the Title to Prometheus Time Series.
Under Thresholds, click the trash bin image next to the predefined threshold at 80
to remove the threshold. Finally, click Apply and you should see something like
Figure 6-10.

Stat Panel | 113

Figure 6-10. Dashboard with a graph and Stat panel

Displaying label values is handy for software versions on your graphs. Add another
Stat panel; this time you will use the query expression node_uname_info, which
contains the same information as the uname -a command. Set “Format as” to Table,
and under “Value options,” set the Fields to “release.” Under “Panel options,” the Title
should be Kernel version. After clicking “Back to dashboard” and rearranging the
panels using drag-and-drop, you should see something like Figure 6-11.

The Stat panel has further features, including different colors depending on the time
series value, and displaying sparklines behind the value.

114 | Chapter 6: Dashboarding with Grafana

Figure 6-11. Dashboard with a graph and two Stat panels, one numeric and one text

Table Panel
While the Stat panel can display multiple time series, each unique time series takes
quite a lot of space. The Table panel allows you to display multiple time series in a
more concise way, and offers advanced features like pagination. Table panels tend to
require more configuration than other panels, and all the text can look cluttered on
your dashboards.

Add a new panel, this time a Table panel. As before, click “Add panel” and then “Add
a new panel.” Select Table in the dropdown on the right. Use the query expression
rate(node_network_receive_bytes_total[1m]) on the Metrics tab, and change the
Type from Range to Instant. Change the Format to Table.

There are more columns that you need here. Go to the Transform tab, and click
“Organize fields.” Select the fields you want to hide by clicking the eye icon, as in
Figure 6-12.

Table Panel | 115

Figure 6-12. A transformation to hide certain fields

In the sidebar, under “Standard options,” set the unit to “bytes/sec (IEC)” under “data
rate.” Finally, under “Panel options,” set the title to Network Traffic Received. After
all that, if you go back to the dashboard and rearrange the panels, you should see a
dashboard like the one in Figure 6-13.

Figure 6-13. Dashboard with several panels, including a table for per-device network
traffic

116 | Chapter 6: Dashboarding with Grafana

State Timeline Panel
When visualizing metrics that represent a state, such as the up metrics, the State
timeline panel comes in handy. It shows how discrete state changes over time.

Let’s use it to display our up metrics.

Let’s add a State timeline panel. As before, Click “Add panel” and then “Add a new
panel.” Select “State Timeline” in the dropdown on the right. Use the query expression
up on the Metrics tab. Set the legend to custom: {{job}} / {{instance}}.

In the sidebar, under “Standard options,” set “Color scheme” to “Single Color.” Under
“Value mappings,” click “Add value mappings” and add two value mappings: Value 1
to display the text UP, with a green color, and Value 2 to display DOWN, with a red color
as seen in Figure 6-14.

Figure 6-14. Adding two value mappings to the State timeline panel

You see the finished State timeline panel in Figure 6-15.

Figure 6-15. The finished State timeline panel

State Timeline Panel | 117

9 Loopback and your wired and/or WiFi device.

Template Variables
All the dashboard examples we have shown you so far have applied to a single
Prometheus and a single Node Exporter. This is fine for demonstration of the basics,
but not great when you have hundreds or even tens of machines to monitor. The
good news is that you don’t have to create a dashboard for every individual machine.
You can use Grafana’s templating feature.

You only have monitoring for one machine set up, so for this example we will
template based on network devices, as you should have at least two of those.9

To start with, create a new dashboard by hovering on the four squares icon in the
sidebar and then clicking “+New dashboard,” as you can see in Figure 6-16.

Figure 6-16. Dashboards menu, including a button to create new dashboards

118 | Chapter 6: Dashboarding with Grafana

10 This was called templating in previous Grafana versions.

11 Note that this is not a PromQL query. label_values is specific to Grafana and used only for templating.

Click the gear icon up top and then Variables.10 Click “+Add variable” to add a
template variable. The Name should be Device, and the “Data source” is Prometheus
with a Refresh of “On time range change.” The Query you will use is label_val
ues(node_network_receive_bytes_total, device).11 The page should look like
Figure 6-17. Click Update to add the variable.

Figure 6-17. Adding a Device template variable to a Grafana dashboard

When you click the arrow to go back to the dashboard, a dropdown for the variable
will now be available, as shown in Figure 6-18.

Template Variables | 119

Figure 6-18. The dropdown for the Device template variable is visible

You now need to use the variable. Click the X to close the Templating section,
then click the three dots, and add a new Time series panel. Configure the query
expression to be rate(node_network_receive_bytes_total{device="$Device"}

[$__rate_interval]), and $Device will be substituted with the value of the template
variable. If you’re using the Multi-value option, you would use device=~"$Device" as
the variable would be a regular expression in that case. Regexes should also be used
in case the value is complex, as Grafana would try to escape them anyway. Set the
Legend Format to Custom then {{device}}, the Title to Bytes Received, and the
Unit to “bytes/sec” under “data rate.”

As you have seen, we are using $__rate_interval in our PromQL
expression. This is a Grafana feature that selects the best interval
depending on the scrape interval set in the datasource configura‐
tion, and other parameters such as the step used in the panel. If you
look at 24 hours of data, the value of $__rate_interval would be
greater than if you only look at the last hour.

120 | Chapter 6: Dashboarding with Grafana

Click Apply and click the panel title, and this time click More and then
Duplicate. This will create a copy of the existing panel. Alter the settings on
this new panel to use the expression rate(node_network_transmit_bytes_total
{device=~"$Device"})[$__rate_interval], and set the Title to Bytes Transmit
ted. The dashboard will now have panels for bytes sent in both directions, as shown
in Figure 6-19, and you can look at each network device by selecting it in the
dropdown.

Figure 6-19. A basic network traffic dashboard using a template variable

In the real world you would probably template based on the instance label and
display all the network-related metrics for one machine at once. You might even
have multiple variables for one dashboard. This is how a generic dashboard for Java
garbage collection might work: one variable for the job, one for the instance, and
one to select which Prometheus data source to use.

You may have noticed that as you change the value of the variable, the URL parame‐
ters change, and similarly if you use the time controls. This allows you to share dash‐
board links, or have your alerts link to a dashboard with just the right variable values,
as shown in “Notification templates” on page 337. There is a “Share dashboard” icon
at the top of the page you can use to create the URLs and take snapshots of the data in
the dashboard. Snapshots are perfect for postmortems and outage reports, where you
want to preserve how the dashboard looked.

In the next chapter we will go into more detail on the Node Exporter and some of the
metrics it offers.

Template Variables | 121

PART III

Infrastructure Monitoring

The entire world does not (yet) revolve around Prometheus, nor provide Prometheus
metrics out of the box. Exporters are tools that let you translate metrics from other
systems into a format that Prometheus understands.

In Chapter 7 one of the first exporters you will probably use, the Node Exporter, is
covered in detail.

In Chapter 8 you will learn how Prometheus knows what to pull metrics from and
how to do so.

Chapter 9 dives into monitoring of container technologies such as Docker and
Kubernetes.

There are literally hundreds of exporters in the Prometheus ecosystem. Chapter 10
shows you how to use various typical exporters.

As you may already have another metric-based monitoring system, Chapter 11 looks
at how you can integrate those into Prometheus.

Exporters don’t appear from thin air. If the exporter you want doesn’t exist, you can
use Chapter 12 to create one.

1 The Node Exporter has nothing to do with Node.js; it’s node in the sense of compute node.
2 The Windows Exporter was previously known as the WMI Exporter.

CHAPTER 7

Node Exporter

The Node Exporter1 is likely one of the first exporters you will use, as already
seen in Chapter 2. It exposes machine-level metrics, largely from your operating
system’s kernel, such as CPU, memory, disk space, disk I/O, network bandwidth, and
motherboard temperature. The Node Exporter is used with Unix systems; Windows
users should use the Windows Exporter instead.2

The Node Exporter is intended only to monitor the machine itself, not individual
processes or services on it. Other monitoring systems often have what we like to call
an uberagent; that is, a single process that monitors everything on the machine. In
the Prometheus architecture each of your services will expose its own metrics, using
an exporter if needed, which is then directly scraped by Prometheus. This avoids you
ending up with uberagent as either an operational or performance bottleneck, and
enables you to think in terms more of dynamic services rather than machines.

The guidelines to use when you are creating metrics with direct instrumentation,
such as those discussed in “What Should I Name My Metrics?” on page 60, are
relatively clear. This is not the case with exporters, where by definition the data
is coming from a source not designed with the Prometheus guidelines in mind.
Depending on the volume and quality of metrics, trade-offs have to be made by the
exporter developers between engineering effort and getting perfect metrics.

In the case of Linux, there are thousands of metrics on offer. Some are well docu‐
mented and understood, such as CPU usage; others, like memory usage, have varied
from kernel version to kernel version as the implementation has changed. You will

125

https://oreil.ly/mVsAX

3 Docker is a platform for developers and system administrators to build, package, and deploy applications
in containers. A container is a lightweight, portable, and self-sufficient packaging technology that allows
developers to deploy an application and its dependencies as a single unit.

even find metrics that are completely undocumented, where you would have to read
the kernel source code to try to figure out what they do.

The Node Exporter is designed to be run as a nonroot user, and should be run
directly on the machine in the same way you run a system daemon like sshd or cron.

While running Node Exporter within Docker3 is possible, you
will need to use some volumes and command-line parameters
(--path.procfs, --path.rootfs, --path.sysfs) to mount the
host filesystem inside of the container. If possible, run the Node
Exporter as a service on the node, without Docker. Docker
attempts to isolate a container from the inner workings of the
machine, which doesn’t work well with the Node Exporter trying to
get to those inner workings.

Unlike most other exporters, due to the broad variety of metrics available from oper‐
ating systems, the Node Exporter allows you to configure which categories of metrics
it fetches. You can do this with command-line flags such as --collector.wifi, which
would enable the WiFi collector, and --no-collector.wifi, which would disable
it. --collector.disable-defaults will disable all collectors except those explicitly
enabled as command-line flags. There are reasonable defaults set, so this is not
something you should worry about when starting out.

Different kernels expose different metrics, as, for example, Linux and FreeBSD do
things in different ways. Metrics may move between collectors over time as the Node
Exporter is refactored. If you are using a different Unix system, you will find that the
metrics and collectors on offer vary.

In this chapter we explain some of the key metrics Node Exporter version 1.4.0
exposes with a 5.18.0 Linux kernel. This is not intended to be an exhaustive list of
available metrics. As with most exporters and applications, you will want to look
through the /metrics path to see what is available. You can try out the example
PromQL expressions using your setup from Chapter 2.

CPU Collector
The main metric from the CPU collector is node_cpu_seconds_total, which is a
counter indicating how much time each CPU spent in each mode. The labels are cpu
and mode:

126 | Chapter 7: Node Exporter

HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 13024.48
node_cpu_seconds_total{cpu="0",mode="iowait"} 9.53
node_cpu_seconds_total{cpu="0",mode="irq"} 0
node_cpu_seconds_total{cpu="0",mode="nice"} 0.11
node_cpu_seconds_total{cpu="0",mode="softirq"} 109.74
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 566.67
node_cpu_seconds_total{cpu="0",mode="user"} 1220.36
node_cpu_seconds_total{cpu="1",mode="idle"} 13501.28
node_cpu_seconds_total{cpu="1",mode="iowait"} 5.96
node_cpu_seconds_total{cpu="1",mode="irq"} 0
node_cpu_seconds_total{cpu="1",mode="nice"} 0.09
node_cpu_seconds_total{cpu="1",mode="softirq"} 23.74
node_cpu_seconds_total{cpu="1",mode="steal"} 0
node_cpu_seconds_total{cpu="1",mode="system"} 423.84
node_cpu_seconds_total{cpu="1",mode="user"} 936.05

For each CPU, the modes will in aggregate increase by one second per second. This
allows you to calculate the proportion of idle time across all CPUs using the PromQL
expression:

avg without(cpu, mode)(rate(node_cpu_seconds_total{mode="idle"}[1m]))

This works as it calculates the idle time per second per CPU and then averages that
across all the CPUs in the machine.

You could generalize this to calculate the proportion of time spent in each mode for a
machine using:

avg without(cpu)(rate(node_cpu_seconds_total[1m]))

CPU usage by guests (i.e., virtual machines running under the kernel) is already
included in the user and nice modes. You can see guest time separately in the
node_cpu_guest_seconds_total metric.

Filesystem Collector
The filesystem collector unsurprisingly collects metrics about your mounted
filesystems, just as you would obtain from the df command. The --collector.file
system.mount-points-exclude and --collector.filesystem.fs-types-exclude

flags allow restricting which filesystems are included (the defaults exclude various
pseudofilesystems). As you will not have Node Exporter running as root, you will
need to ensure that file permissions allow it to use the statfs system call on mount‐
points of interest to you.

Filesystem Collector | 127

All metrics from this collector are prefixed with node_filesystem_ and have device,
fstype, and mountpoint labels:

HELP node_filesystem_size_bytes Filesystem size in bytes.
TYPE node_filesystem_size_bytes gauge
node_filesystem_size_bytes{device="/dev/sda5",fstype="ext4",mountpoint="/"} 9e+10

The filesystem metrics are largely self-evident. The one subtlety you should be
aware of is the difference between node_filesystem_avail_bytes and node_file
system_free_bytes. On Unix filesystems some space is reserved for the root user,
so that they can still do things when users fill up all available space. node_filesys
tem_avail_bytes is the space available to users, and when trying to calculate used
disk space you should accordingly use:

 node_filesystem_avail_bytes
/
 node_filesystem_size_bytes

node_filesystem_files and node_filesystem_files_free indicate the number of
inodes and how many of them are free, which are roughly speaking the number of
files your filesystem has. You can also see this with df -i.

Diskstats Collector
The diskstats collector exposes disk I/O metrics from /proc/diskstats. By default, the
--collector.diskstats.device-exclude flag attempts to exclude things that are
not real disks, such as partitions and loopback devices:

HELP node_disk_io_now The number of I/Os currently in progress.
TYPE node_disk_io_now gauge
node_disk_io_now{device="sda"} 0

All metrics have a device label, and almost all are counters, as follows:

node_disk_io_now

The number of I/Os in progress

node_disk_io_time_seconds_total

Incremented when I/O is in progress

node_disk_read_bytes_total

Bytes read by I/Os

128 | Chapter 7: Node Exporter

4 A sector is always 512 bytes in /proc/diskstats; you do not need to worry if your disks are using larger sector
sizes. This is an example of something that is only apparent from reading the Linux source code.

node_disk_read_time_seconds_total

The time taken by read I/Os

node_disk_reads_completed_total

The number of complete I/Os

node_disk_written_bytes_total

Bytes written by I/Os

node_disk_write_time_seconds_total

The time taken by write I/Os

node_disk_writes_completed_total

The number of complete write I/Os

These mostly mean what you think, but take a look at the kernel documentation4 for
more details.

You can use node_disk_io_time_seconds_total to calculate disk I/O utilization, as
would be shown by iostat -x:

rate(node_disk_io_time_seconds_total[1m])

You can calculate the average time for a read I/O with:

 rate(node_disk_read_time_seconds_total[1m])
/
 rate(node_disk_reads_completed_total[1m])

Netdev Collector
The netdev collector exposes metrics about your network devices with the prefix
node_network_ and a device label:

HELP node_network_receive_bytes_total Network device statistic receive_bytes.
TYPE node_network_receive_bytes_total counter
node_network_receive_bytes_total{device="lo"} 8.3213967e+07
node_network_receive_bytes_total{device="wlan0"} 7.0854462e+07

node_network_receive_bytes_total and node_network_transmit_bytes_total

are the main metrics you will care about as you can calculate network bandwidth
in and out with them:

rate(node_network_receive_bytes_total[1m])

Netdev Collector | 129

https://oreil.ly/xcAUs

5 Almost.
6 Prometheus 2.0, for example, relies on page cache.

You may also be interested in node_network_receive_packets_total and node_net
work_transmit_packets_total, which track packets in and out, respectively.

Meminfo Collector
The meminfo collector has all your standard memory-related metrics with a
node_memory_ prefix. These all come from your /proc/meminfo, and this is the first
collector where semantics get a bit muddy. The collector does convert kilobytes to
preferred bytes, but beyond that it’s up to you to know enough from the documenta‐
tion and experience with Linux internals to understand what these metrics mean:

HELP node_memory_MemTotal_bytes Memory information field MemTotal.
TYPE node_memory_MemTotal_bytes gauge
node_memory_MemTotal_bytes 3.285016576e+10

For example, node_memory_MemTotal_bytes is the total5 amount of physical memory
in the machine—nice and obvious. But note that there is no used memory metric, so
you have to somehow calculate it and thus how much memory is not used from other
metrics.

node_memory_MemFree_bytes is the amount of memory that isn’t used by anything,
but that doesn’t mean it is all the memory you have to spare. In theory your page
cache (node_memory_Cached_bytes) can be reclaimed, as can your write buffers
(node_memory_Buffers_bytes), but that could adversely affect performance for some
applications.6 In addition, there are various other kernel structures using memory
such as slab and page tables.

node_memory_MemAvailable is a heuristic from the kernel for how much memory is
really available, but was only added in version 3.14 of Linux. If you are running a new
enough kernel, this is a metric you could use to detect memory exhaustion.

Hwmon Collector
When on bare metal, the hwmon collector provides metrics such as temperature and
fan speeds with a node_hwmon_ prefix. This is the same information you can obtain
with the sensors command:

HELP node_hwmon_sensor_label Label for given chip and sensor
TYPE node_hwmon_sensor_label gauge
node_hwmon_sensor_label{chip="platform_coretemp_0",
 label="core_0",sensor="temp2"} 1
node_hwmon_sensor_label{chip="platform_coretemp_0",

130 | Chapter 7: Node Exporter

https://oreil.ly/F-0JW
https://oreil.ly/F-0JW

7 Labels here does not mean Prometheus labels; they are sensor labels and come from files such as /sys/devi‐
ces/platform/coretemp.0/hwmon/hwmon1/temp3_label.

8 Such as our laptop, which the preceding metric output is from.
9 It used to also provide CPU metrics, which have now been refactored into the CPU collector.

 label="core_1",sensor="temp3"} 1
HELP node_hwmon_temp_celsius Hardware monitor for temperature (input)
TYPE node_hwmon_temp_celsius gauge
node_hwmon_temp_celsius{chip="platform_coretemp_0",sensor="temp1"} 42
node_hwmon_temp_celsius{chip="platform_coretemp_0",sensor="temp2"} 42
node_hwmon_temp_celsius{chip="platform_coretemp_0",sensor="temp3"} 41

node_hwmon_temp_celsius is the temperature of various of your components, which
may also have sensor labels7 exposed in node_hwmon_sensor_label.

While it is not the case for all hardware, for some8 you will need the sensor label to
understand what the sensor is. In the preceding metrics, temp3 represents CPU core
number 1.

You can join the label label from node_hwmon_sensor_label to node_

hwmon_temp_celsius using group_left, which is further discussed in “Many-to-One
and group_left” on page 268:

 node_hwmon_temp_celsius
* ignoring(label) group_left(label)
 node_hwmon_sensor_label

Stat Collector
The stat collector is a bit of a mix, as it provides metrics from /proc/stat.9

node_boot_time_seconds is when the kernel started, from which you can calculate
how long the kernel has been up:

time() - node_boot_time_seconds

node_intr_total indicates the number of hardware interrupts you have had. It isn’t
called node_interrupts_total, as that is used by the interrupts collector, which is
disabled by default due to high cardinality.

The other metrics relate to processes. node_forks_total is a counter for the number
of fork syscalls, node_context_switches_total is the number of context switches,
while node_procs_blocked and node_procs_running indicate the number of pro‐
cesses that are blocked or running.

Stat Collector | 131

Uname Collector
The uname collector exposes a single metric, node_uname_info, which you already
saw in “Stat Panel” on page 113:

HELP node_uname_info Labeled system information as provided by the uname
 system call.
TYPE node_uname_info gauge
node_uname_info{domainname="(none)",machine="x86_64",nodename="kozo",
 release="4.4.0-101-generic",sysname="Linux",
 version="#124-Ubuntu SMP Fri Nov 10 18:29:59 UTC 2017"} 1

The nodename label is the hostname of the machine, which may differ from the
instance target label (see “Target Labels” on page 153) or any other names, such as in
DNS, that you may have for it.

To count how many machines run which kernel version, you could use:

count by(release)(node_uname_info)

OS Collector
The OS collector exposes two metrics, node_os_info and node_os_version, which
provide you with operating system information:

HELP node_os_info A metric with a constant '1' value labeled by
 build_id, id, id_like, image_id, image_version, name,
 pretty_name, variant, variant_id, version, version_codename,
 version_id.
TYPE node_os_info gauge
node_os_info{build_id="22.05.20220912.bf014ca",id="nixos",
 id_like="",image_id="",image_version="",name="NixOS",
 pretty_name="NixOS 22.05 (Quokka)",variant="",
 variant_id="",version="22.05 (Quokka)",
 version_codename="quokka",version_id="22.05"} 1
HELP node_os_version Metric containing the major.minor
 part of the OS version.
TYPE node_os_version gauge
node_os_version{id="nixos",id_like="",name="NixOS"} 22.05

To count how many machines run which distro version, you could use:

count by(name, version)(node_os_info)

Loadavg Collector
The loadavg collector provides the 1-, 5-, and 15-minute load averages as
node_load1, node_load5, and node_load15, respectively.

132 | Chapter 7: Node Exporter

The meaning of this metric varies across platforms, and may not mean what you
think it does. For example, on Linux it is not just the number of processes waiting in
the run queue, but also uninterruptible processes such as those waiting for I/O.

If your kernel is recent enough, we recommend that you use the
pressure collector, as described in “Pressure Collector” on page
133.

Load averages can be useful for a quick idea if a machine has gotten busier (for some
definition of busier) recently, but they are not a good choice to alert on. For a more
detailed look we recommend Brendan Gregg’s blog, “Linux Load Averages: Solving
the Mystery”.

Its a silly number but people think its important.
—A comment in the Linux loadavg.c

Pressure Collector
Pressure Stall Information (PSI) was introduced in Linux kernel 4.20. These metrics
measure resource pressure for three resources: CPU, memory, and I/O. It needs to be
enabled in the kernel during compilation time.

Your kernel might be built with PSI support but it could be disabled by default, in
which case you can pass psi=1 on the kernel command line during boot to enable it.

Five different metrics are exposed by the PSI collector:

HELP node_pressure_cpu_waiting_seconds_total
 Total time in seconds that processes have waited for CPU time
TYPE node_pressure_cpu_waiting_seconds_total counter
node_pressure_cpu_waiting_seconds_total 113.6605130
HELP node_pressure_io_stalled_seconds_total
 Total time in seconds no process could make progress due to IO congestion
TYPE node_pressure_io_stalled_seconds_total counter
node_pressure_io_stalled_seconds_total 8.630361
HELP node_pressure_io_waiting_seconds_total
 Total time in seconds that processes have waited due to IO congestion
TYPE node_pressure_io_waiting_seconds_total counter
node_pressure_io_waiting_seconds_total 9.609997
HELP node_pressure_memory_stalled_seconds_total
 Total time in seconds no process could make progress
TYPE node_pressure_memory_stalled_seconds_total counter
node_pressure_memory_stalled_seconds_total 0
HELP node_pressure_memory_waiting_seconds_total
 Total time in seconds that processes have waited for memory
TYPE node_pressure_memory_waiting_seconds_total counter
node_pressure_memory_waiting_seconds_total 0

Pressure Collector | 133

https://oreil.ly/JVKfd
https://oreil.ly/JVKfd

10 Self-Monitoring, Analysis, and Reporting Technology, metrics from hard drives that can be useful to predict
and detect failure.

11 Chef is a configuration management tool that allows for automated infrastructure provisioning and manage‐
ment through the use of reusable scripts called “cookbooks.”

waiting metrics indicate the total amount of seconds that some tasks have been
waiting, and stalled means that all tasks were delayed by lack of resources. Memory
and I/O have both waiting and stalled metrics, where CPU only has waiting. This
is because a CPU is always executing a process.

As those are counters, you can use them with the rate() function to determine
whether some resources are overloaded:

rate(node_pressure_memory_waiting_seconds_total[1m])

Textfile Collector
The textfile collector is a bit different from the collectors we have already shown you.
It doesn’t obtain metrics from the kernel, but rather from files that you produce.

The Node Exporter is not meant to run as root, so metrics such as those from
SMART10 require root privileges to run the smartctl command.

In addition to metrics that require root, you can only obtain some information by
running a command such as iptables. For reliability, the Node Exporter does not
start processes.

To use the textfile collector you would create a cronjob that regularly runs commands
such as smartctl or iptables, converts its output into the Prometheus text exposi‐
tion format, and atomically writes it to a file in a specific directory. On every scrape,
the Node Exporter will read the files in that directory and include their metrics in its
output.

The Prometheus server cannot read text files directly, therefore you
need a software to expose the file as HTTP. While you could use
any HTTP server, the Node Exporter also checks that the metrics
are correct and is able to expose metrics coming from multiple
files.

You can use this collector to add in your own metrics via cronjobs, or you could
have more static information that comes from files written out by your machine
configuration management system to provide some info metrics (discussed in “Info”
on page 96), such as which Chef11 roles it has, about the machine.

134 | Chapter 7: Node Exporter

12 A distributed database.
13 If a metric about a batch job has a different lifecycle than the machine, it is likely a service-level batch job and

you may wish to use the Pushgateway, as discussed in “Pushgateway” on page 76.

As with the Node Exporter generally, the textfile collector is intended for metrics
about a machine. For example, there might be some kernel metric that the Node
Exporter does not yet expose, or that requires root to access. You might want to track
more operating system-level metrics, such as if there are pending package updates
or a reboot due. While it is technically a service rather than an operating system
metric, recording when batch jobs such as backups last completed for the Cassandra12

node running on the machine would also be a good use of the textfile collector,
as your interest in whether the backups worked on that machine goes away when
the machine does. That is to say the Cassandra node has the same lifecycle as the
machine.13

The textfile collector should not be used to try to convert Prometheus to push.
Nor should you use the textfile collector as a way to take metrics from other export‐
ers and applications running on the machine and expose them all on the Node
Exporter’s /metrics, but rather have Prometheus scrape each exporter and application
individually.

Using the Textfile Collector
The textfile collector is enabled by default, but you must provide the
--collector.textfile.directory command-line flag to the Node Exporter for it
to work. This should point to a directory that you use solely for this purpose to avoid
mixups.

To try this out you should create a directory, write out a simple file in the exposition
format (as discussed in “Text Exposition Format” on page 80), and start the Node
Exporter with it configured to use this directory, as shown in Example 7-1. The
textfile collector only looks at files with the .prom extension.

Example 7-1. Using the textfile collector with a simple example

hostname $ mkdir textfile
hostname $ echo example_metric 1 > textfile/example.prom
hostname $./node_exporter --collector.textfile.directory=$PWD/textfile

Example 7-2 shows the content of the file created by Example 7-1.

Example 7-2. The content of textfile/example.prom

example_metric 1

Textfile Collector | 135

14 The rename system call is atomic, but can only be used on the same filesystem.

15 $$ in shell expands to the current process ID (pid).

If you look at the Node Exporter’s /metrics, you will now see your metric:

HELP example_metric Metric read from /some/path/textfile/example.prom
TYPE example_metric untyped
example_metric 1

If no HELP is provided, the textfile collector will provide one for
you. If you are putting the same metric in multiple files (with
different labels of course), you need to provide the same HELP for
each, as otherwise the mismatched HELP will cause an error.

Usually you will create and update the .prom files with a cronjob. As a scrape can
happen at any time, it is important that the Node Exporter does not see partially
written files. To this end you should write first to a temporary file in the same
directory and then move the complete file to the final filename.14

Example 7-3 shows a cronjob that outputs to the textfile collector. It creates the
metrics in a temporary file,15 and renames them to the final filename. This is a trivial
example that uses short commands, but in most real-world use cases you will want to
create a script to keep things readable.

Example 7-3. /etc/crontab that exposes the number of lines in /etc/shadow as the
shadow_entries metric using the textfile collector

TEXTFILE=/path/to/textfile/directory

This must all be on one line
*/5 * * * * root (echo -n 'shadow_entries '; grep -c . /etc/shadow)
 > $TEXTFILE/shadow.prom.$$
 && mv $TEXTFILE/shadow.prom.$$ $TEXTFILE/shadow.prom

A number of example scripts for use with the textfile collector are available in the
textfile collector example scripts GitHub repository.

136 | Chapter 7: Node Exporter

https://oreil.ly/HMkDo

16 The mtime is the last time the file was modified.

Timestamps
While the exposition format supports timestamps, you cannot use them with the
textfile collector. This is because it doesn’t make sense semantically, as your metrics
would not appear with the same timestamp as other metrics from the scrape.

Instead, the mtime16 of the file is available to you in the node_textfile_mtime_
seconds metric. You can use this to alert on your cronjobs not working, because if
this value is from too long ago it can indicate a problem:

HELP node_textfile_mtime_seconds Unixtime mtime of textfiles successfully read.
TYPE node_textfile_mtime_seconds gauge
node_textfile_mtime_seconds{file="example.prom"} 1.516205651e+09

Now that you have the Node Exporter running, let’s look at how you can tell Prome‐
theus about all the machines you have it running on.

Textfile Collector | 137

1 Brian’s home Prometheus uses a hardcoded static configuration, for example, as I only have a handful of
machines.

2 Like Prometheus vCloud Director SD

CHAPTER 8

Service Discovery

Thus far you’ve had Prometheus find what to scrape using static configuration via
static_configs. This is fine for simple use cases,1 but having to manually keep your
prometheus.yml up to date as machines are added and removed would get annoying,
particularly if you were in a dynamic environment where new instances might be
brought up every minute. This chapter will show you how you can let Prometheus
know what to scrape.

You already know where all of your machines and services are, and how they are
laid out. Service discovery (SD) enables you to provide that information to Prome‐
theus from whichever database you store it in. Prometheus supports many common
sources of service information, such as Consul, Amazon EC2, and Kubernetes out of
the box. If your particular source isn’t already supported, you can use the file-based
and HTTP-based service discovery mechanisms to hook it in. For file-based service
discovery, this could be by having your configuration management system, such as
Ansible or Chef, write the list of machines and services they know about in the right
format, or a script running regularly to pull it from whatever data source you use.
For HTTP-based service discovery, third-party tools such as NetBox offer plug-ins
that can be installed to offer Prometheus-compatible HTTP service discovery end‐
points. Note that some SD projects2 support both HTTP-based service discovery and
file-based service discovery.

Knowing what your monitoring targets are, and thus what should be scraped, is only
the first step. Labels are a key part of Prometheus (see Chapter 5), and assigning
target labels to targets allows them to be grouped and organized in ways that make

139

https://oreil.ly/sxi0j
https://oreil.ly/-cbF3

3 The Power Distribution Unit (PDU), part of the electrical system in a datacenter. PDUs usually feed a group
of racks with electricity, and knowing the CPU load on each machine could be useful to ensure each PDU can
provide the power required.

4 Amazon Elastic Compute Cloud
5 Google Compute Engine

sense to you. Target labels allow you to aggregate targets performing the same role,
that are in the same environment, or are run by the same team.

As target labels are configured in Prometheus rather than in the applications and
exporters themselves, this allows your different teams to have label hierarchies that
make sense to them. Your infrastructure team might care only about which rack and
PDU3 a machine is on, while your database team would care that it is the PostgreSQL
master for their production environment. If you had a kernel developer who was
investigating a rarely occurring problem, they might just care which kernel version
was in use.

Service discovery and the pull model allow all these views of the world to coexist, as
each of your teams can run their own Prometheus with the target labels that make
sense to them.

Service Discovery Mechanisms
Service discovery is designed to integrate with the machine and service databases
that you already have. Out of the box, Prometheus 2.37.0 has support for Azure,
Consul, DigitalOcean, Docker, Docker Swarm, DNS, Eureka, EC2,4 file-based service
discovery, GCE,5 Hetzner, HTTP-based service discovery, IONOS Cloud, Kubernetes,
Kuma, LightSail, Linode (Akamai), Marathon, Nerve, Nomad, OpenStack, PuppetDB,
Scaleway, Serverset, Uyuni, Triton, and Vultr service discovery in addition to the
static discovery you have already seen.

Service discovery isn’t just about you providing a list of machines to Prometheus,
or monitoring. It is a more general concern that you will see across your systems;
applications need to find their dependencies to talk to, and hardware technicians
need to know which machines are safe to turn off and repair. Accordingly, you should
not only have a raw list of machines and services, but also conventions around how
they are organized and their lifecycles.

A good service discovery mechanism will provide you with metadata. This may be
the name of a service, its description, which team owns it, structured tags about it, or
anything else that you may find useful. Metadata is what you will convert into target
labels, and generally the more metadata you have, the better.

140 | Chapter 8: Service Discovery

A full discussion of service discovery is beyond the scope of this book. If you haven’t
gotten around to formalizing your configuration management and service databases
yet, Consul tends to be a good place to start.

Top-Down Versus Bottom-Up
There are two broad categories of service discovery mechanisms you will come
across. Those where the service instances register with service discovery, such as
Consul, are bottom-up. Those where instead the service discovery knows what should
be there, such as EC2, are top-down.

Both approaches are common. Top-down makes it easy for you to detect if something
is meant to be running but isn’t. However, for bottom-up you would need a separate
reconciliation process to ensure things are in sync, so that cases such as an application
instance that stalls before it can register are caught.

Static
You have already seen static configuration in Chapter 2, where targets are provided
directly in prometheus.yml. It is useful if you have a small and simple setup that rarely
changes. This might be your home network, a scrape config that is only for a local
Pushgateway, or even Prometheus scraping itself, as in Example 8-1.

Example 8-1. Using static service discovery to have Prometheus scrape itself

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090

If you are using a configuration management tool such as Ansible, you could have its
Jinja2 templating system write out a list of all the machines it knows about to have
their Node Exporters scraped, such as in Example 8-2.

Example 8-2. Using Ansible’s templating to create targets for the Node Exporter on all
machines

scrape_configs:
 - job_name: node
 static_configs:
 - targets:
{% for host in groups["all"] %}
 - {{ host }}:9100
{% endfor %}

Service Discovery Mechanisms | 141

In addition to providing a list of targets, a static config can also provide labels for
those targets in the labels field. If you find yourself needing this, then file SD,
covered in “File” on page 142, tends to be a better approach.

The plural in static_configs indicates that it is a list, and you can specify multiple
static configs in one scrape config, as shown in Example 8-3. While there is not much
point to doing this for static configs, it can be useful with other service discovery
mechanisms if you want to talk to multiple data sources. You can even mix and match
service discovery mechanisms within a scrape config, though that is unlikely to result
in a particularly understandable configuration.

Example 8-3. Two monitoring targets are provided, each in its own static config

scrape_configs:
 - job_name: node
 static_configs:
 - targets:
 - host1:9100
 labels:
 datacenter: paris
 - targets:
 - host2:9100
 - host3:9100
 labels:
 datacenter: montreal

The first static config, containing a single target, with a label datacenter set to
paris.

The second static config, containing two targets, with a label datacenter set to
montreal.

The same applies to scrape_configs, a list of scrape configs in which you can specify
as many as you like. The only restriction is that the job_name must be unique.

File
File service discovery, usually referred to as file SD, does not use the network. Instead,
it reads monitoring targets from files you provide on the local filesystem. This allows
you to integrate with service discovery systems Prometheus doesn’t support out of
the box, or when Prometheus can’t quite do the things you need with the metadata
available.

142 | Chapter 8: Service Discovery

6 You cannot, however, put globs in the directory, so a/b/*.json is fine, a/*/file.json is not.

You can provide files in either JSON or YAML formats. The file extension must
be .json for JSON, and either .yml or .yaml for YAML. You can see a JSON example in
Example 8-4, which you would put in a file called filesd.json. You can have as many or
as few targets as you like in a single file.

Example 8-4. filesd.json with three targets

[
 {
 "targets": ["host1:9100", "host2:9100"],
 "labels": {
 "team": "infra",
 "job": "node"
 }
 },
 {
 "targets": ["host1:9090"],
 "labels": {
 "team": "monitoring",
 "job": "prometheus"
 }
 }
]

The JSON format is not perfect. One issue you will likely encounter
here is that the last item in a list or hash cannot have a trailing
comma. We would recommend using a JSON library to generate
JSON files rather than trying to do it by hand.

Configuration in Prometheus uses file_sd_configs in your scrape config, as shown
in Example 8-5. Each file SD config takes a list of filepaths, and you can use globs in
the filename.6 Paths are relative to Prometheus’s working directory, which is to say the
directory you start Prometheus in.

Example 8-5. prometheus.yml using file service discovery

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'

Service Discovery Mechanisms | 143

7 This endpoint was added in Prometheus 2.1.0. On older versions you can hover over the Labels on the Targets
page to see the metadata.

8 job_name is only a default, which we will look at further in “Duplicate Jobs” on page 163. The other __ labels
are special and will be covered in “How to Scrape” on page 162.

Usually you would not provide metadata for use with relabeling when using file SD,
but rather the ultimate target labels you would like to have.

If you visit http://localhost:9090/service-discovery in your browser7 and click “show
more,” you will see Figure 8-1, with both job and team labels from filesd.json.8 As
these are made-up targets, the scrapes will fail, unless you actually happen to have a
host1 and host2 on your network.

Figure 8-1. Service discovery status page showing three discovered targets from file SD

144 | Chapter 8: Service Discovery

9 By default, one request is made every 60 seconds. This can be changed with the refresh_interval parameter.

Providing the targets with a file means it could come from templating in a configura‐
tion management system, a daemon that writes it out regularly, or even from a web
service via a cronjob using wget. Changes are picked up automatically using inotify,
so it would be wise to ensure file changes are made atomically using rename, similarly
to how you did in “Textfile Collector” on page 134.

HTTP
HTTP service discovery, usually referred to as HTTP SD, fetches a target list using
HTTP. This mechanism makes it possible to integrate any application directly with
Prometheus, without the need to produce files locally on the Prometheus server.

With HTTP service discovery, Prometheus will refresh the target list every minute.9

As shown in Example 8-6, the minimum configuration to provide to Prometheus is
the URL of the service discovery endpoint.

Example 8-6. prometheus.yml with http_sd_configs

scrape_configs:
 - job_name: cmdb
 http_sd_configs:
 - url: http://cmdb.local/prometheus-service-discovery

Service discovery endpoints must use the same JSON format as in Example 8-4. The
HTTP Header Content-Type must be application/json and the HTTP response
code must be 200. Unlike file SD, YAML is not supported by HTTP SD.

In case of a failure, the last discovered targets are kept by Prome‐
theus. As this targets list is not persisted on disk, failures happen‐
ing directly after a Prometheus restart will produce an empty target
list.
You can monitor the health of the HTTP service discovery with
the counter prometheus_sd_http_failures_total. If it is continu‐
ously increasing, Prometheus can’t refresh its targets.

The HTTP SD provides all the necessary HTTP options to authenticate. An example
with TLS certificates and credentials is shown in Example 8-7.

Service Discovery Mechanisms | 145

Example 8-7. prometheus.yml with http_sd_configs and security options

scrape_configs:
 - job_name: cmdb
 http_sd_configs:
 - url: http://cmdb.local/prometheus-service-discovery
 authorization:
 credentials_file: token
 tls_config:
 ca_file: ca.crt

Consul
Consul service discovery is a service discovery mechanism from HashiCorp. If you
do not already have a service discovery system within your organization, Consul is
one of the easier ones to get up and running. Consul has an agent that runs on
each of your machines, and these gossip among themselves. Applications talk only
to the local agent on a machine. Some number of agents are also servers, providing
persistence and consistency.

To try it out, you can set up a development Consul agent by following Example 8-8. If
you wish to use Consul in production, you should follow the official Getting Started
guide.

Example 8-8. Setting up a Consul agent in development mode

hostname $ wget https://releases.hashicorp.com/consul/1.0.2/
 consul_1.0.2_linux_amd64.zip
hostname $ unzip consul_1.0.2_linux_amd64.zip
hostname $./consul agent -dev

The Consul UI should now be available in your browser on http://localhost:8500/.
Consul has a notion of services, and in the development setup has a single service,
which is Consul itself. Next, run a Prometheus with the configuration in Example 8-9.

Example 8-9. prometheus.yml using Consul service discovery

scrape_configs:
 - job_name: consul
 consul_sd_configs:
 - server: 'localhost:8500'

Go to http://localhost:9090/service-discovery in your browser and you will see the
screen in Figure 8-2, showing that the Consul service discovery has discovered a
single target with some metadata, which became a target with instance and job
labels. If you had more agents and services, they would also show up here.

146 | Chapter 8: Service Discovery

https://oreil.ly/SmhRW

Figure 8-2. Service discovery status page showing one discovered target, its metadata,
and target labels from Consul

Consul does not expose metrics behind a /metrics path, so the scrapes from your
Prometheus will fail. But it does still provide enough to find all your machines
running a Consul agent, and thus should be running a Node Exporter that you can
scrape. We will look at how in “Relabeling” on page 149.

If you want to monitor Consul itself, you will need to configure
both Prometheus and Consul accordingly. See the Consul docu‐
mentation for more details. A Consul Exporter provides cluster-
level and kv-based metrics.

Service Discovery Mechanisms | 147

https://oreil.ly/Sz3bP
https://oreil.ly/Sz3bP
https://oreil.ly/4ZDhM

10 Only the EC2:DescribeInstances permission is needed, but policies are generally easier for you to set up
initially.

EC2
Amazon Elastic Compute Cloud, more commonly known as EC2, is a popular pro‐
vider of virtual machines. It is one of several cloud providers that Prometheus allows
you to use out of the box for service discovery.

To use it you must provide Prometheus with credentials to use the EC2 API. One
way you can do this is by setting up an IAM user with the AmazonEC2ReadOnlyAccess
policy10 and providing the access key and secret key in the configuration file, as
shown in Example 8-10.

Example 8-10. prometheus.yml using EC2 service discovery

scrape_configs:
 - job_name: ec2
 ec2_sd_configs:
 - region: <region>
 access_key: <access key>
 secret_key: <secret key>

If you aren’t already running some, start at least one EC2 instance in the EC2
region you have configured Prometheus to look at. If you go to http://localhost:9090/
service-discovery in your browser, you can see the discovered targets and the metadata
extracted from EC2. __meta_ec2_tag_Name="My Display Name", for example, is
the Name tag on this instance, which is the name you will see in the EC2 Console
(Figure 8-3).

You may notice that the instance label is using the private IP. This is a sensible
default as it is presumed that Prometheus will be running beside what it is monitor‐
ing. Not all EC2 instances have public IPs, and there are network charges for talking
to an EC2 instance’s public IP.

You will find that service discovery for other cloud providers is broadly similar, but
the configuration required and metadata returned vary.

148 | Chapter 8: Service Discovery

Figure 8-3. Service discovery status page showing one discovered target, its metadata,
and target labels from EC2

Relabeling
As seen in the preceding examples of service discovery mechanisms, the targets and
their metadata can be a little raw. You could integrate with file SD and provide
Prometheus with exactly the targets and labels you want, but in most cases you won’t
need to. Instead, you can tell Prometheus how to map from metadata to targets using
relabeling.

Relabeling | 149

Many characters, such as periods and asterisks, are not valid in
Prometheus label names, so will be sanitized to underscores in
service discovery metadata.

In an ideal world you will have service discovery and relabeling configured so that
new machines and applications are picked up and monitored automatically. In the
real world it is not unlikely that as your setup matures it will get sufficiently intricate
that you have to regularly update the Prometheus configuration file, but by then you
will likely also have an infrastructure so complex that it is only a minor hurdle.

Choosing What to Scrape
The first thing you will want to configure is which targets you actually want to scrape.
If you are part of one team running one service, you don’t want your Prometheus to
be scraping every target in the same EC2 region.

Continuing on from Example 8-5, what if you just wanted to monitor the infrastruc‐
ture team’s machines? You can do this with the keep relabel action, as shown in
Example 8-11. The regex is applied to the values of the labels listed in source_labels
(joined by a semicolon), and if the regex matches, the target is kept. As there is only
one action here, this results in all targets with team="infra" being kept.

But for a target with a team="monitoring" label, the regex will not match, and the
target will be dropped.

Regular expressions in relabeling are fully anchored, meaning that
the pattern infra will not match fooinfra or infrabar.

Example 8-11. Using a keep relabel action to only monitor targets with a team="infra"
label

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [team]
 regex: infra
 action: keep

150 | Chapter 8: Service Discovery

11 You can override the character used to join with the separator field.

You can have multiple relabel actions in a relabel_configs; all of them will be
processed in order unless either a keep or drop action drops the target. For example,
Example 8-12 will drop all targets, as a label cannot have both infra and monitoring
as a value.

Example 8-12. Two relabel actions requiring contradictory values for the team label

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [team]
 regex: infra
 action: keep
 - source_labels: [team]
 regex: monitoring
 action: keep

To allow multiple values for a label you would use | (the pipe symbol) for the
alternation operator, which is a fancy way of saying one or the other. Example 8-13
shows the right way to keep only targets for either the infrastructure or monitoring
teams.

Example 8-13. Using | to allow one label value or another

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [team]
 regex: infra|monitoring
 action: keep

In addition to the keep action that drops targets that do not match, you can also use
the drop action to drop targets that do match. You can also provide multiple labels
in source_labels; their values will be joined with a semicolon.11 If you don’t want
to scrape the Prometheus jobs of the monitoring team, you can combine these, as in
Example 8-14.

Relabeling | 151

Example 8-14. Using multiple source labels

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [job, team]
 regex: prometheus;monitoring
 action: drop

How you use relabeling is up to you. You should define some conventions. For
example, EC2 instances should have a team tag with the name of the team that
owns it, or all production services should have a production tag in Consul. Without
conventions every new service will require special handling for monitoring, which is
probably not the best use of your time.

If your service discovery mechanism includes health checking of some form, do not
use this to drop unhealthy instances. Even when an instance is reporting as unhealthy,
it could be producing useful metrics, particularly around startup and shutdown.

Prometheus needs to have a target for each of your individual
application instances. Scraping through load balancers will not
work, as you can hit a different instance on each scrape, which
could, for example, make counters appear to go backward.

Regular Expressions
Prometheus uses the RE2 engine for regular expressions that comes with Go. RE2
is designed to be linear-time but does not support back references, lookahead asser‐
tions, and some other advanced features.

If you are not familiar with regular expressions, they let you provide a rule (called
a pattern) that is then tested against text. The following table is a quick primer on
regular expressions.

Matches
a The character a

. Any single character

\. A single period

.* Any number of characters

.+ At least one character

a+ One or more a characters

152 | Chapter 8: Service Discovery

12 It is possible for two of your targets to have the same target labels, with other settings different, but this should
be avoided because metrics such as up will clash.

Matches
[0-9] Any single digit, 0–9

\d Any single digit, 0–9

\d* Any number of digits

[^0-9] A single character that is not a digit

ab The character a followed by the character b

a(b|c*) An a, followed by a single b, or any number of c characters

In addition, parentheses create a capture group. So if you had the pattern (.)(\d+)
and the text a123, then the first capture group would contain a and the second 123.
Capture groups are useful to extract parts of a string for later use.

Target Labels
Target labels are labels that are added to the labels of every time series returned
from a scrape. They are the identity of your targets,12 and accordingly they should
not generally vary over time as might be the case with version numbers or machine
owners.

Every time your target labels change the labels of the scraped time series, their
identities also change. This will cause discontinuities in your graphs, and can cause
issues with rules and alerts.

So what does make a good target label? You have already seen job and instance,
target labels all targets have. It is also common to add target labels for the broader
scope of the application, such as whether it is in development or production, their
region, datacenter, and which team manages them. Labels for structure within your
application can also make sense, for example, if there is sharding.

Target labels ultimately allow you to select, group, and aggregate targets in PromQL.
For example, you might want alerts for development to be handled differently than
production, to know which shard of your application is the most loaded, or which
team is using the most CPU time.

But target labels come with a cost. While it is quite cheap to add one more label
in terms of resources, the real cost comes when you are writing PromQL. Every
additional label is one more you need to keep in mind for every single PromQL
expression you write. For example, if you were to add a host label that was unique
per target, that would violate the expectation that only instance is unique per target,

Relabeling | 153

13 On the other hand, don’t try to plan too far in advance. It’s not unusual that, as your architecture changes
over the years, your target label hierarchy will need to change with it. Predicting exactly how it will change
is usually impossible. Consider, for example, if you were moving from a traditional datacenter setup to a
provider like EC2, which has availability zones.

which could break all of your aggregation that used without(instance). This is
discussed further in Chapter 14.

As a rule of thumb your target labels should be a hierarchy, with each one adding
additional distinctiveness. For example, you might have a hierarchy where regions
contain datacenters that contain environments that contain services that contain jobs
that contain instances. This isn’t a hard-and-fast rule; you might plan ahead a little
and have a datacenter label even if you only have one datacenter today.13

For labels the application knows about but don’t make sense to have as target labels,
such as version numbers, you can expose them using info metrics, as discussed in
“Info” on page 96.

If you find that you want every target in a Prometheus to share some labels such as
region, you should instead use external_labels for them, as discussed in “External
Labels” on page 323.

replace

So how do you use relabeling to specify your target labels? The answer is the replace
action. The replace action allows you to copy labels around, while also applying
regular expressions.

Continuing on from Example 8-5, let’s say that the monitoring team was renamed
to the monitor team and you can’t change the file SD input yet so you want to
use relabeling instead. Example 8-15 looks for a team label that matches the regular
expression monitoring (which is to say, the exact string monitoring), and if it finds it,
puts the replacement value monitor in the team label.

Example 8-15. Using a replace relabel action to replace team="monitoring" with
team="monitor"

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [team]
 regex: monitoring
 replacement: monitor

154 | Chapter 8: Service Discovery

 target_label: team
 action: replace

That’s fairly simple, but in practice having to specify replacement label values one by
one would be a lot of work for you. Let’s say it turns out that the problem was the
ing in monitoring, and you wanted relabeling to strip any trailing “ings” in team
names. Example 8-16 does this by applying the regular expression (.*)ing, which
matches all strings that end with ing and puts the start of the label value in the first
capture group. The replacement value consists of that first capture group, which will
be placed in the team label.

Example 8-16. Using a replace relabel action to remove a trailing “ing” from the team
label

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: [team]
 regex: '(.*)ing'
 replacement: '${1}'
 target_label: team
 action: replace

If one of your targets does not have a label value that matches, such as team="infra",
then the replace action has no effect on that target, as you can see in Figure 8-4.

Relabeling | 155

Figure 8-4. The “ing” is removed from monitoring, while the “infra” targets are
unaffected

A label with an empty value is the same as not having that label, so if you wanted to
you could remove the team label using Example 8-17.

156 | Chapter 8: Service Discovery

14 You could also omit source_labels: []. We left it in here to make it clearer that the label was being
removed.

Example 8-17. Using a replace relabel action to remove the team label

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: []
 regex: '(.*)'
 replacement: '${1}'
 target_label: team
 action: replace

All labels beginning with __ are discarded at the end of relabeling
for target labels, so you don’t need to do this yourself.

Since performing a regular expression against the whole string, capturing it, and
using it as the replacement is common, these are all defaults. Thus you can omit
them,14 and Example 8-18 will have the same effect as Example 8-17.

Example 8-18. Using the defaults to remove the team label succinctly

scrape_configs:
 - job_name: file
 file_sd_configs:
 - files:
 - '*.json'
 relabel_configs:
 - source_labels: []
 target_label: team

Now that you have more of a sense of how the replace action works, let’s look at
a more realistic example. Example 8-9 produced a target with port 80, but it’d be
useful if you could change that to port 9100 where the Node Exporter is running. In
Example 8-19 we take the address from Consul and append :9100 to it, placing it in
the __address__ label.

Relabeling | 157

15 A job could potentially be further divided into shards with another label.

Example 8-19. Using the IP from Consul with port 9100 for the Node Exporter

scrape_configs:
 - job_name: node
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel_configs:
 - source_labels: [__meta_consul_address]
 regex: '(.*)'
 replacement: '${1}:9100'
 target_label: __address__

If relabeling produces two identical targets from one of your scrape
configs, they will be deduplicated automatically. So if you have
many Consul services running on each machine, only one target
per machine would result from Example 8-19.

job, instance, and __address__

In the preceding examples you may have noticed that there was an instance target
label, but no matching instance label in the metadata. So where did it come from?
The answer is that if your target has no instance label, it is defaulted to the value of
the __address__ label.

instance along with job are two labels your targets will always have, job being
defaulted from the job_name configuration option. The job label indicates a set of
instances that serve the same purpose, and will generally all be running with the same
binary and configuration.15 The instance label identifies one instance within a job.

The __address__ is the host and port your Prometheus will connect to when scrap‐
ing. While it provides a default for the instance label, it is separate so you can have
a different value for it. For example, you may wish to use the Consul node name
in the instance label, while leaving the address pointing to the IP address, as in
Example 8-20. This is a better approach than adding an additional host, node, or
alias label with a nicer name, as it avoids adding a second label unique to each
target, which would cause complications in your PromQL.

158 | Chapter 8: Service Discovery

Example 8-20. Using the IP from Consul with port 9100 as the address, with the node
name in the instance label

scrape_configs:
 - job_name: consul
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel_configs:
 - source_labels: [__meta_consul_address]
 regex: '(.*)'
 replacement: '${1}:9100'
 target_label: __address__
 - source_labels: [__meta_consul_node]
 regex: '(.*)'
 replacement: '${1}:9100'
 target_label: instance

Prometheus will perform DNS resolution on the __address__, so
one way you can have more readable instance labels is by provid‐
ing host:port rather than ip:port.

labelmap

The labelmap action is different from the drop, keep, and replace actions you have
already seen in that it applies to label names rather than label values.

Where you might find this useful is if the service discovery you are using already
has a form of key-value labels, and you would like to use some of those as target
labels. This might be to allow configuration of arbitrary target labels, without having
to change your Prometheus configuration every time there is a new label.

EC2’s tags, for example, are key-value pairs. You might have an existing convention to
have the name of the service go in the service tag, and its semantics align with what
the job label means in Prometheus. You might also declare a convention that any
tags prefixed with monitor_ will become target labels. For example, an EC2 tag of mon
itor_foo=bar would become a Prometheus target label of foo="bar". Example 8-21
shows this setup, using a replace action for the job label and a labelmap action for
the monitor_ prefix.

Relabeling | 159

Example 8-21. Use the EC2 service tag as the job label, with all tags prefixed with
monitor_ as additional target labels

scrape_configs:
 - job_name: ec2
 ec2_sd_configs:
 - region: <region>
 access_key: <access key>
 secret_key: <secret key>
 relabel_configs:
 - source_labels: [__meta_ec2_tag_service]
 target_label: job
 - regex: __meta_ec2_public_tag_monitor_(.*)
 replacement: '${1}'
 action: labelmap

But you should be wary of blindly copying all labels in a scenario like this, as it
is unlikely that Prometheus is the only consumer of metadata such as this within
your overall architecture. For example, a new cost center tag might be added to all
of your EC2 instances for internal billing reasons. If that tag automatically became a
target label due to a labelmap action, that would change all of your target labels and
likely break graphing and alerting. Thus, using either well-known names (such as the
service tag here) or clearly namespaced names (such as monitor_) is wise.

Case
Sometimes, it is useful to change the case of label values. This enables you to make
labels consistent across multiple service discoveries. You can change the case with the
lowercase and uppercase relabel actions, as shown in Example 8-22.

Example 8-22. prometheus.yml with lowercase relabel config

- job_name: ionos
 ionos_sd_configs:
 - basic_auth:
 username: john.doe@example.com
 password: <secret>
 datacenter_id: 57375146-e890-4b84-8d59-c045d3eb6f4c
 relabel_configs:
 - source_labels: [__meta_ionos_server_type]
 target_label: server_type
 action: lowercase

160 | Chapter 8: Service Discovery

16 An EC2 instance can have multiple network interfaces, each of which could be in different subnets.

Lists
Not all service discovery mechanisms have key-value labels or tags; some just have a
list of tags, with the canonical example being Consul’s tags. While Consul is the most
likely place that you will run into this, there are various other places where a service
discovery mechanism must somehow convert a list into key-value metadata such as
the EC2 subnet ID.16

This is done by joining the items in the list with a comma and using the now-joined
items as a label value. A comma is also put at the start and the end of the value to
make writing correct regular expressions easier.

As an example, say a Consul service had dublin and prod tags. The __meta_
consul_tags label could have the value ,dublin,prod, or ,prod,dublin, as tags
are unordered. If you wanted to only scrape production targets, you would use a keep
action, as shown in Example 8-23.

Example 8-23. Keeping only Consul services with the prod tag

scrape_configs:
 - job_name: node
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel_configs:
 - source_labels: [__meta_consul_tags]
 regex: '.*,prod,.*'
 action: keep

Sometimes you will have tags that are only the value of a key-value pair. You can con‐
vert such values to labels, but you need to know the potential values. Example 8-24
shows how a tag indicating the environment of a target can be converted into an env
label.

Example 8-24. Using prod, staging, and dev tags to fill an env label

scrape_configs:
 - job_name: node
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel_configs:
 - source_labels: [__meta_consul_tags]
 regex: '.*,(prod|staging|dev),.*'
 target_label: env

Relabeling | 161

With sophisticated relabeling rules you may find yourself needing a
temporary label to put a value in. The __tmp prefix is reserved for
this purpose.

How to Scrape
You now have targets with their target labels and the __address__ to connect to.
There are some additional things you may wish to configure, such as a path other
than /metrics or client authentication.

Example 8-25 shows some of the more common options you can use. As these
change over time, check the documentation for the most up-to-date settings.

Example 8-25. A scrape config showing several of the available options

scrape_configs:
 - job_name: example
 consul_sd_configs:
 - server: 'localhost:8500'
 scrape_timeout: 5s
 metrics_path: /admin/metrics
 params:
 foo: [bar]
 scheme: https
 tls_config:
 insecure_skip_verify: true
 basic_auth:
 username: brian
 password: hunter2

metrics_path is only the path of the URL, and if you tried to put /metrics?foo=bar,
for example, it would get escaped to /metrics%3Ffoo=bar. Instead, any URL parame‐
ters should be placed in params, though you usually only need this for federation
and the classes of exporters that include the SNMP and Blackbox Exporters. It is not
possible to add arbitrary headers, as that would make debugging more difficult. If
you need flexibility beyond what is offered, you can always use a proxy server with
proxy_url to tweak your scrape requests.

scheme can be http or https; and with https you can provide additional options,
including the key_file and cert_file if you wish to use TLS client authentication.
insecure_skip_verify allows you to disable validation of a scrape target’s TLS cert,
which is not advisable security-wise.

Aside from TLS client authentication, HTTP Basic Authentication and HTTP Bearer
Token Authentication are offered via basic_auth, OAuth2, and authorization. The
token can also be read from a file, rather than from the configuration, using authori

162 | Chapter 8: Service Discovery

https://oreil.ly/xHd-o

17 Nor are the service discovery systems typically designed to hold secrets.

zation’s credentials_file. As the tokens and basic authentication passwords are
expected to contain secrets, they will be masked on the status pages of Prometheus so
that you don’t accidentally leak them.

In addition to overriding the scrape_timeout in a scrape config, you can also over‐
ride the scrape_interval, but in general you should aim for a single scrape interval
in a Prometheus for sanity.

Of these scrape config settings, the scheme, path, and URL parameters are available
to you and can be overridden by you via relabeling, with the label names __scheme__,
__metrics_path__, and __param_<name>. If there are multiple URL parameters with
the same name, only the first is available. It is not possible to relabel other settings for
reasons varying from sanity to security.

Service discovery metadata is not considered security sensitive17 and will be accessible
to anyone with access to the Prometheus UI. As secrets can only be specified per
scrape config, it is recommended that any credentials you use are made standard
across your services.

Duplicate Jobs
While job_name must be unique, as it is only a default, you are not prevented from
having different scrape configs producing targets with the same job label.

For example, if you had some jobs that required a different secret which were indica‐
ted by a Consul tag, you could segregate them using keep and drop actions, and then
use a replace to set the job label:

 - job_name: my_job
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel
 - source_labels: [__meta_consul_tag]
 regex: '.*,specialsecret,.*'
 action: drop
 basic_auth:
 username: brian
 password: normalSecret

 - job_name: my_job_special_secret
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel
 - source_labels: [__meta_consul_tag]
 regex: '.*,specialsecret,.*'

How to Scrape | 163

18 Which is not to say that all relabel actions make sense in all relabel contexts.
19 In Prometheus 2.3.0 this metric was changed to a histogram and renamed to

prometheus_http_response_size_bytes.

 action: keep
 - replacement: my_job
 target_label: job
 basic_auth:
 username: brian
 password: specialSecret

metric_relabel_configs
In addition to relabeling being used for its original purpose of mapping service
discovery metadata to target labels, relabeling has also been applied to other areas of
Prometheus. One of those is metric relabeling: relabeling applied to the time series
scraped from a target.

The keep, drop, replace, lowercase, uppercase, and labelmap actions you have
already seen can all be used in metric_relabel_configs as there are no restrictions
on which relabel actions can be used where.18

To help you remember which is which, relabel_configs occurs
when figuring out what to scrape, and metrics_relabel_configs
happens after the scrape has occurred.

There are two cases where you might use metric relabeling: when dropping expensive
metrics and when fixing bad metrics. While it is better to fix such problems at the
source, it is always good to know that you have tactical options while the fix is in
progress.

Metric relabeling gives you access to the time series after it is scraped but before
it is written to storage. The keep and drop actions can be applied to the __name__
label (discussed in “Reserved Labels and __name__” on page 90) to select which
time series you actually want to ingest. If, for example, you discovered that the
http_request_size_bytes19 metric of Prometheus had excessive cardinality and was
causing performance issues, you could drop it, as shown in Example 8-26. It is still
being transferred over the network and parsed, but this approach can still offer you
some breathing room.

164 | Chapter 8: Service Discovery

Example 8-26. Dropping an expensive metric using metric_relabel_configs

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 metric_relabel_configs:
 - source_labels: [__name__]
 regex: http_request_size_bytes
 action: drop

The le labels are also available. As mentioned in “Cumulative Histograms” on page
54, you can also drop certain buckets (but not +Inf) of histograms and you will still
be able to calculate quantiles. Example 8-27 shows this with the prometheus_tsdb_
compaction_duration_seconds histogram in Prometheus.

Example 8-27. Dropping histogram buckets to reduce cardinality

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 metric_relabel_configs:
 - source_labels: [__name__, le]
 regex: 'prometheus_tsdb_compaction_duration_seconds_bucket;(4|32|256)'
 action: drop

metric_relabel_configs only applies to metrics that you scrape
from the target. It does not apply to metrics like up, which are
about the scrape itself, and which will have only the target labels.

You could also use metric_relabel_configs to rename metrics, rename labels, or
even extract labels from metric names.

labeldrop and labelkeep
There are two further relabel actions that are unlikely to be ever required for target
relabeling, but that can come up in metric relabeling. Sometimes exporters can be
overly enthusiastic in the labels they apply, or confuse instrumentation labels with
target labels and return what they think should be the target labels in a scrape. The
replace action can only deal with label names you know the name of in advance,
which sometimes isn’t the case.

How to Scrape | 165

This is where labeldrop and labelkeep come in. Similar to labelmap, they apply
to label names rather than to label values. Instead of copying labels, labeldrop and
labelkeep remove labels. Example 8-28 uses labeldrop to drop all labels with a
given prefix.

Example 8-28. Dropping all scraped labels that begin with node_

scrape_configs:
 - job_name: misbehaving
 static_configs:
 - targets:
 - localhost:1234
 metric_relabel_configs:
 - regex: 'node_.*'
 action: labeldrop

When you have to use these actions, prefer using labeldrop where practical. With
labelkeep you need to list every single label you want to keep, including __name__,
le, and quantile.

Label Clashes and honor_labels
While labeldrop can be used when an exporter incorrectly presumes it knows what
labels you want, there is a small set of exporters where the exporter does know
the labels you want. For example, metrics in the Pushgateway should not have an
instance label, as was mentioned in “Pushgateway” on page 76, so you need some
way of not having the Pushgateway’s instance target label apply.

But first let’s look at what happens when there is a target label with the same name as
an instrumentation label from a scrape. To avoid misbehaving applications interfering
with your target label setup, it is the target label that wins. If you had a clash on the
job label, for example, the instrumentation label would be renamed to exported_job.

If instead you want the instrumentation label to win and override the target label, you
can set honor_labels: true in your scrape config. This is the one place in Prome‐
theus where an empty label is not the same thing as a missing label. If a scraped
metric explicitly has an instance="" label, and honor_labels: true is configured,
the resultant time series will have no instance label. This technique is used by the
Pushgateway.

166 | Chapter 8: Service Discovery

Aside from the Pushgateway, honor_labels can also come up when ingesting metrics
from other monitoring systems if you do not follow the recommendation in Chap‐
ter 11 to run one exporter per application instance.

If you want more fine-grained control for handling clashing target
and instrumentation labels, you can use metric_relabel_configs
to adjust the labels before the metrics are added to the storage.
Handling of label clashes and honor_labels is performed before
metric_relabel_configs.

Now that you understand service discovery, you’re ready to look at monitoring
containers and how service discovery can be used with Kubernetes.

How to Scrape | 167

CHAPTER 9

Containers and Kubernetes

Container deployments are becoming more common with technologies such as
Docker and Kubernetes—you may even already be using them. In this chapter we will
cover exporters that you can use with containers, and explain how to use Prometheus
with Kubernetes.

All Prometheus components run happily in containers, with the sole exception of the
Node Exporter, as noted in Chapter 7.

cAdvisor
In the same way the Node Exporter provides metrics about the machine, cAdvisor is
an exporter that provides metrics about cgroups. Cgroups are a Linux kernel isolation
feature that are usually used to implement containers on Linux, and are also used by
runtime environments such as systemd.

You can run cAdvisor with Docker:

docker run \
 --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:rw \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
 --volume=/dev/disk/:/dev/disk:ro \
 --publish=8080:8080 \
 --detach=true \
 --name=cadvisor \
 gcr.io/cadvisor/cadvisor:v0.45.0

If you visit http://localhost:8080/metrics, you will see a long list of metrics, as Fig‐
ure 9-1 shows.

169

https://oreil.ly/tvOmH

Figure 9-1. The start of a /metrics page from cAdvisor

The container metrics are prefixed with container_, and you will notice that they all
have an id label. The id labels starting with /docker/ or /system.slice/docker- are
from Docker and its containers, and if you have /user.slice/ and /system.slice/,
they come from systemd running on your machine. If you have other software using
cgroups, its cgroups will also be listed.

These metrics can be scraped with a prometheus.yml such as:

scrape_configs:
 - job_name: cadvisor
 static_configs:
 - targets:
 - localhost:8080

CPU
You will find three metrics for container CPU: container_cpu_usage_seconds_
total, container_cpu_system_seconds_total, and container_cpu_user_seconds_
total.

container_cpu_usage_seconds_total is split out by CPU, but not by mode.
container_cpu_system_seconds_total and container_cpu_user_seconds_total

are the user and system modes, respectively, similar to the Node Exporter’s CPU
collector, as described in “CPU Collector” on page 126. These are all counters with
which you can use the rate function.

With many containers and CPUs in one machine, you may find
that the aggregate cardinality of metrics from cAdvisor becomes a
performance issue. You can use a drop relabel action, as discussed
in “metric_relabel_configs” on page 164, to drop less-valuable met‐
rics at scrape time.

170 | Chapter 9: Containers and Kubernetes

1 Mapped files include both mmap and any libraries used by a process. This is exposed by the kernel as file_
mapped but is not used by cAdvisor, thus the standard RSS is not available from cAdvisor.

2 The behavior of cAdvisor is the main reason the labeldrop and labelkeep relabel actions were originally
added.

Memory
Similar to the Node Exporter, the memory usage metrics are less than perfectly clear
and require digging through code and documentation to understand them.

container_memory_cache is the page cache used by the container, in bytes. con
tainer_memory_rss is the resident set size (RSS), in bytes. This is not the same RSS
or physical memory used as a process would have, as it excludes the sizes of mapped
files.1 container_memory_usage_bytes is the RSS and the page cache, and is limi‐
ted by container_spec_memory_limit_bytes if the limit is nonzero. container_mem
ory_working_set_bytes is calculated by subtracting the inactive file-backed memory
(total_inactive_file from the kernel) from container_memory_usage_bytes.

In practice, container_memory_working_set_bytes is the closest to RSS that is
exposed, and you may also wish to keep an eye on container_memory_usage_bytes
as it includes page cache.

In general, we would recommend relying on metrics such as process_resident_
memory_bytes from the process itself rather than metrics from the cgroups. If your
applications do not expose Prometheus metrics, then cAdvisor is a good stopgap, and
cAdvisor metrics are still important for debugging and profiling.

Labels
Cgroups are organized in a hierarchy, with the / cgroup at the root of the hierarchy.
The metrics for each of your cgroups include the usage of the cgroups below it. This
goes against the usual rule that within a metric the sum or average is meaningful, and
is thus an example of the table exception, as discussed in “Table Exception” on page
99.

In addition to the id label, cAdvisor adds in more labels about containers if it has
them. For Docker containers there will always be the image and name labels, for the
specific Docker image being run and Docker’s name for the container.

Any metadata labels Docker has for a container will also be included with a con
tainer_label_ prefix. Arbitrary labels like these from a scrape can break your moni‐
toring, so you may wish to remove them with a labeldrop, as shown in Example 9-1,
and as we talked about in “labeldrop and labelkeep” on page 165.2

cAdvisor | 171

https://oreil.ly/VzlVe

Example 9-1. Using labeldrop to drop container_label_ labels from cAdvisor

scrape_configs:
 - job_name: cadvisor
 static_configs:
 - targets:
 - localhost:9090
 metric_relabel_configs:
 - regex: 'container_label_.*'
 action: labeldrop

Kubernetes
Kubernetes is a popular platform for orchestrating containers. Like Prometheus, the
Kubernetes project is part of the Cloud Native Computing Foundation (CNCF). Here
we are going to cover running Prometheus on Kubernetes and working with its
service discovery.

As Kubernetes is a large and fast-moving target, we are not going to cover it in
exhaustive detail. If you would like more depth, we suggest the book Kubernetes: Up
and Running, 3rd Edition by Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan
Evenson (O’Reilly).

Running in Kubernetes
To demonstrate using Prometheus with Kubernetes, we will use Minikube, a tool used
to run a single-node Kubernetes cluster inside a virtual machine.

Follow the steps in Example 9-2. We are using a Linux amd64 machine with Virtual‐
Box already installed. If you are running in a different environment, follow the Mini‐
kube installation documentation. Here we are using Minikube 1.27.0 and Kubernetes
1.25.0.

Example 9-2. Downloading and running Minikube

hostname $ curl -LO \
 https://storage.googleapis.com/minikube/releases/latesn/minikube-linux-amd64
hostname $ mv minikube-linux-amd64 minikube
hostname $ chmod +x minikube
hostname $./minikube start --kubernetes-version=v1.25.0
minikube v1.27.0 on Nixos 22.05 (Quokka)
Starting control plane node minikube in cluster minikube
Pulling base image ...
Downloading Kubernetes v1.25.0 preload ...
Creating docker container (CPUs=2, Memory=7800MB) ...
Preparing Kubernetes v1.25.0 on Docker 20.10.17 ...
> Generating certificates and keys ...
> Booting up control plane ...

172 | Chapter 9: Containers and Kubernetes

https://oreil.ly/Sl3or
https://oreil.ly/9oMjE
https://oreil.ly/9oMjE

> Configuring RBAC rules ...
Verifying Kubernetes components...
> Using image gcr.io/k8s-minikube/storage-provisioner:v5
Enabled addons: storage-provisioner, default-storageclass

minikube dashboard --url will provide you with a URL for the
Kubernetes Dashboard, from which you can inspect your Kuber‐
netes cluster.

You will also need to install kubectl, which is a command-line tool used to interact
with Kubernetes clusters. Example 9-3 shows how to install it and confirm that it can
talk to your Kubernetes cluster.

Example 9-3. Downloading and testing kubectl

hostname $ wget \
 https://storage.googleapis.com/kubernetes-release/release/v1.25.0/bin/linux
 /amd64/kubectl
hostname $ chmod +x kubectl
hostname $./kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 44s

Example 9-4 shows how to get an example Prometheus running on Minikube.
prometheus-deployment.yml contains permissions so that your Prometheus can access
resources such as pods and nodes in the cluster, a configMap is created to hold the
Prometheus configuration file, a deployment to run Prometheus, and a service to
make it easier for you to access the Prometheus UI. The final command, the ./mini
kube service, will provide you with a URL where you can access the Prometheus UI.

Example 9-4. Setting up permissions and running Prometheus on Kubernetes

hostname $./kubectl apply -f prometheus-deployment.yml
hostname $./minikube service prometheus --url
http://192.168.99.100:30114

The target status page should look like Figure 9-2. You can find prometheus-
deployment.yml on GitHub.

Kubernetes | 173

https://oreil.ly/Qdwvp

3 Endpoints are deprecated in Kubernetes, and we recommend using endpointslice.

Figure 9-2. Targets of the example Prometheus running on Kubernetes

This is a basic Kubernetes setup to demonstrate the core ideas behind monitoring on
Kubernetes, and it is not intended for you to use directly in production; for example,
all data is lost every time Prometheus restarts.

Service Discovery
There are currently six different types of Kubernetes service discoveries you can use
with Prometheus, namely node, endpoints, endpointslice, service, pod, and ingress.3

Prometheus uses the Kubernetes API to discover targets.

Node
Node service discovery is used to discover the nodes comprising the Kubernetes
cluster, and you will use it to monitor the infrastructure around Kubernetes. The
Kubelet is the name of the agent that runs on each node, and you should scrape it as
part of monitoring the health of the Kubernetes cluster (Example 9-5).

174 | Chapter 9: Containers and Kubernetes

4 We don’t use node as the job label, as that’s typically used for the Node Exporter.

Example 9-5. prometheus.yml fragment to scrape the Kubelet

scrape_configs:
- job_name: 'kubelet'
 kubernetes_sd_configs:
 - role: node
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true
 authorization:
 credentials_file: /var/run/secrets/kubernetes.io/serviceaccount/token

Example 9-5 shows the configuration being used by Prometheus to scrape the Kube‐
let. We are going to break down the scrape config:

job_name: 'kubelet'

A default job label is provided, and as there are no relabel_configs, kubelet will be
the job label:4

kubernetes_sd_configs:
- role: node

A single Kubernetes service discovery is provided with the node role. The node role
discovers one target for each of your Kubelets. As Prometheus is running inside
the cluster, the defaults for the Kubernetes service discovery are already set up to
authenticate with the Kubernetes API:

scheme: https
tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true
authorization:
 credentials_file: /var/run/secrets/kubernetes.io/serviceaccount/token

The Kubelet serves its /metrics over HTTPS, so we must specify the scheme. Kuber‐
netes clusters usually have their own certificate authority that are used to sign their
TLS certs, and the ca_file provides that for the scrape. Unfortunately Minikube
doesn’t get this quite right, so insecure_skip_verify is required to bypass security
checks.

The authorization block and credentials_file parameters make Prometheus use
the service account token as the Bearer token when scraping targets.

The returned target points at the Kubelet, and authentication/authorization is turned
off in this Minikube setup, so no further configuration is needed.

Kubernetes | 175

The tls_config in the scrape config contains TLS settings for the
scrape. kubernetes_sd_configs also has a tls_config that con‐
tains TLS settings for when service discovery talks to the Kuber‐
netes API.

The metadata available includes node annotations and labels, as you can see in
Figure 9-3. You could use this metadata with relabel_configs to add labels to
distinguish interesting subsets of nodes, such as those with different hardware.

Figure 9-3. The Kubelet on the service discovery status page of Prometheus

The Kubelet’s own /metrics only contains metrics about the Kubelet itself,
not container-level information. The Kubelet has an embedded cAdvisor on
its /metrics/cadvisor endpoint. Scraping the embedded cAdvisor only requires adding
a metrics_path to the scrape config used with the Kubelet, as shown in Example 9-6.
The embedded cAdvisor includes labels for the Kubernetes namespace and pod_name.

Example 9-6. prometheus.yml fragment to scrape the Kubelet’s embedded cAdvisor

- job_name: 'cadvisor'
 kubernetes_sd_configs:
 - role: node
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true

176 | Chapter 9: Containers and Kubernetes

5 A service can have multiple ports.

 authorization:
 credentials_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 metrics_path: /metrics/cadvisor

Node service discovery can be used for anything you want to monitor that runs on
each machine in a Kubernetes cluster. If the Node Exporter was running on your
Minikube node, you could scrape it by relabeling the port, for example.

Service
Node service discovery is useful for monitoring the infrastructure of and under
Kubernetes, but not much use for monitoring your applications running on
Kubernetes.

There are several ways that you can organize your applications on Kubernetes, and no
single clear standard has emerged yet. But you are likely using services, which is how
applications on Kubernetes find each other.

While there is a service role, it is not what you usually want. The service role
returns a single target for each port5 of your services. Services are basically load
balancers, and scraping targets through load balancers is not wise, as Prometheus can
scrape a different application instance each time. However, the service role can be
useful for blackbox monitoring to check if the service is responding at all.

Endpointslice
Prometheus should be configured to have a target for each application instance,
and the endpointslice role provides just that. Services are backed by pods. Pods
are a group of tightly coupled containers that share network and storage. For each
Kubernetes service port, the endpoints service discovery role returns a target for each
pod backing that service. Additionally, any other ports of the pods will be returned as
targets.

That’s a bit of a mouthful, so let’s look at an example. One of the services that is
running in your Minikube is the kubernetes service, which is the Kubernetes API
servers. Example 9-7 is a scrape config that will discover and scrape the API servers.

Example 9-7. prometheus.yml fragment used to scrape the Kubernetes API servers

scrape_configs:
- job_name: 'k8apiserver'
 kubernetes_sd_configs:
 - role: endpointslice
 scheme: https

Kubernetes | 177

 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true
 authorization:
 credentials_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - source_labels:
 - __meta_kubernetes_namespace
 - __meta_kubernetes_service_name
 - __meta_kubernetes_endpoint_port_name
 action: keep
 regex: default;kubernetes;https

Breaking down this scrape config:

job_name: 'k8apiserver'

The job label is going to be k8apiserver, as there’s no target relabeling to change it:

kubernetes_sd_configs:
- role: endpointslice

Note that we are using the role endpointslice here, which is
a replacement for endpoints. In recent Kubernetes versions, the
endpoint role can only list up to 1,000 entries. In order to be able
to list all the targets, we recommend you use endpointslices,
which do not have that limitation, to address future growth of your
infrastructure.

There is a single Kubernetes service discovery using the endpointslice role, which
will return a target for every port of every pod backing each of your services:

scheme: https
tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true
authorization:
 credentials_file: /var/run/secrets/kubernetes.io/serviceaccount/token

As with the Kubelet, the API servers are served over HTTPS. In addition, authentica‐
tion is required, which is provided by the credentials_file:

relabel_configs:
- source_labels:
 - __meta_kubernetes_namespace
 - __meta_kubernetes_service_name
 - __meta_kubernetes_endpointslice_port_name
 action: keep
 regex: default;kubernetes;https

178 | Chapter 9: Containers and Kubernetes

This relabel configuration will only return targets that are in the default namespace,
and are part of a service called kubernetes with a port called https.

You can see the resulting target in Figure 9-4. The API server is special, so there isn’t
much metadata. All the other potential targets were dropped.

Figure 9-4. The API server on the service discovery status page of Prometheus

While you will want to scrape the API servers, most of the time you’ll be focused on
your applications. Example 9-8 shows how you can automatically scrape the pods for
all of your services.

Example 9-8. prometheus.yml fragment to scrape pods backing all Kubernetes services,
except the API servers

scrape_configs:
 - job_name: 'k8services'
 kubernetes_sd_configs:
 - role: endpointslice
 relabel_configs:
 - source_labels:
 - __meta_kubernetes_namespace
 - __meta_kubernetes_service_name
 regex: default;kubernetes
 action: drop

Kubernetes | 179

6 This is also the case with basic auth, but not for a challenge-response mechanism like TLS client certificate
authentication.

7 And to not cause confusion with Example 9-10, as kube-dns is in the kube-system namespace.

 - source_labels:
 - __meta_kubernetes_namespace
 regex: default
 action: keep
 - source_labels: [__meta_kubernetes_service_name]
 target_label: job

Once again we will break it down:

job_name: 'k8services'
kubernetes_sd_configs:
 - role: endpointslice

As with the previous example, this is providing a job name and the Kubernetes
endpointslice role, but this does not end up as the job label due to later relabeling.

There are no HTTPS settings, as we know the targets are all plain HTTP. There is no
credentials_file, as no authentication is required, and sending a bearer token to all
of your services could allow them to impersonate you:6

relabel_configs:
- source_labels:
 - __meta_kubernetes_namespace
 - __meta_kubernetes_service_name
 regex: default;kubernetes
 action: drop
- source_labels:
 - __meta_kubernetes_namespace
 regex: default
 action: keep

We excluded the API server, as there is already another scrape config handling it.
We also only looked at the default namespace, which is where we are launching
applications:7

- source_labels: [__meta_kubernetes_service_name]
 target_label: job

This relabel action takes the Kubernetes service name and uses it as the job label. The
job_name we provided for the scrape config is only a default, and does not apply.

In this way you can have your Prometheus automatically pick up new services and
start scraping them with a useful job label. In this case that’s just Prometheus itself, as
shown in Figure 9-5.

180 | Chapter 9: Containers and Kubernetes

8 Forward slashes are not valid in label names, so they are sanitized to underscores.

Figure 9-5. Prometheus has automatically discovered itself using endpoint service
discovery

You could go a step further and use relabeling to add additional labels from service or
pod metadata, or even set __scheme__ or __metrics_path__ based on a Kubernetes
annotation, as shown in Example 9-9. These would look for prometheus.io/scheme,
prometheus.io/path, and prometheus.io/port service annotations,8 and use them if
present.

Example 9-9. Relabeling using Kubernetes service annotations to optionally configure
the scheme, path, and port of targets

relabel_configs:
 - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
 regex: (.+)
 target_label: __scheme__
 - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]

Kubernetes | 181

 regex: (.+)
 target_label: __metrics_path__
 - source_labels:
 - __address__
 - __meta_kubernetes_service_annotation_prometheus_io_port
 regex: ([^:]+)(:\d+)?;(\d+)
 replacement: ${1}:${3}
 target_label: __address__

This is limited to monitoring only one port per service. You could have another
scrape config using the prometheus.io/port2 annotation, and so on for however
many ports you need.

Pod
Discovering endpoints is great for monitoring the primary processes backing your
services, but it won’t discover pods that are not part of services.

The pod role discovers pods. It will return a target for each port of every one of your
pods. As it works off pods, service metadata such as labels and annotations are not
available, as pods do not know which services they are members of. But you will
have access to all pod metadata. How you use this boils down to a question of what
conventions you want to use. The Kubernetes ecosystem is rapidly evolving, and there
is no one standard yet.

You could create a convention that all pods must be part of a service, and then use the
endpointslice role in service discovery. You could have a convention that all pods
have a label indicating the (single) Kubernetes service they are a part of, and use the
pod role for service discovery. As all ports have names, you could base a convention
off that and have ports named with a prefix of prom-http be scraped with HTTP, and
prom-https be scraped with HTTPS.

One of the components that comes with Minikube is kube-dns, which provides DNS
services. Its pod has multiple ports, including a port named metrics that serves
Prometheus metrics. Example 9-10 shows how you could discover this port and use
the name of the container as the job label, as Figure 9-6 shows.

Example 9-10. prometheus.yml to discover all pod ports with the name metrics and to
use the container name as the job label

scrape_configs:
- job_name: 'k8pods'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_container_port_name]
 regex: metrics

182 | Chapter 9: Containers and Kubernetes

 action: keep
 - source_labels: [__meta_kubernetes_pod_container_name]
 target_label: job

Figure 9-6. Pod discovered using pod service discovery

Ingress
An ingress is a way for a Kubernetes service to be exposed outside the cluster. As it is a
layer on top of services, similar to the service role, the ingress role is also basically
a load balancer. If multiple pods backed the service and thus ingress, this would cause
problems when scraping with Prometheus. Accordingly, you should only use this role
for blackbox monitoring.

Kubernetes | 183

9 Put another way, a database exporter does not dump the contents of the database as metrics.
10 Such as the Kubelet exposing cAdvisor’s metrics on another endpoint.

kube-state-metrics
Using Kubernetes service discovery you can have Prometheus scrape your applica‐
tions and Kubernetes infrastructure, but this will not include metrics about what
Kubernetes knows about your services, pods, deployments, and other resources. This
is because applications such as the Kubelet and Kubernetes API servers should expose
information about their own performance, not dump their internal data structures.9

Instead, you would obtain such metrics from another endpoint,10 or if that doesn’t
exist, have an exporter that extracts the relevant information. For Kubernetes, kube-
state-metrics is that exporter.

To run kube-state-metrics you should follow the steps in Example 9-11 and then
visit the /metrics on the returned URL in your browser. You can find kube-state-
metrics.yml on GitHub.

Example 9-11. Running kube-state-metrics

hostname $./kubectl apply -f kube-state-metrics.yml
hostname $./minikube service kube-state-metrics --url
http://192.168.99.100:31774

Some useful metrics include kube_deployment_spec_replicas for the intended
number of metrics in a deployment, kube_node_status_condition for node prob‐
lems, and kube_pod_container_status_restarts_total for pod restarts.

This kube-state-metrics will be automatically scraped by Prome‐
theus due to the scrape config in Example 9-8.

kube-state-metrics features several examples of enum and info metrics, as dis‐
cussed in “Enum” on page 94 and “Info” on page 96 metrics, such as kube_node_sta
tus_condition and kube_pod_info, respectively.

184 | Chapter 9: Containers and Kubernetes

https://oreil.ly/xY3SK

11 Kubernetes Custom Resources Definition

Alternative Deployments
So far, you’ve learned how to deploy Prometheus in Kubernetes from scratch. While
the task is not complex, there are a few projects that provide additional resources,
CRD,11 and helpers, to make your life easier. While they are out of scope for this
book, we encourage you to look at two of them in particular:

• The Prometheus Operator is a project supported by a large community, which•
includes CRD, configuration of Prometheus, and its targets.

• The Prometheus Community Kubernetes Helm Charts provide more than 30•
charts to spin up components from the Prometheus ecosystem using Helm.

Now that you have an idea about how to use Prometheus in container environments,
let’s look at some of the common exporters you will run into.

Alternative Deployments | 185

https://oreil.ly/8S74Q
https://oreil.ly/Mg824

CHAPTER 10

Common Exporters

You already saw the Node Exporter in Chapter 7, but there are literally hundreds of
other exporters you can use.

We are not going to go through all of the ever-growing number of exporters out
there; instead, we will show you some examples of the types of things you will come
across when using exporters. This will prepare you to use exporters in your own
environment.

At the simplest, exporters work out of the box, with no configuration required on
your part, as you already saw for the Node Exporter. Usually you will need to do
minimal configuration to tell the exporter which application instance to scrape. At
the far end, some exporters require extensive configuration as the data they are
working with is very general.

You will generally have one exporter for every application instance that needs one.
This is because the intended way to use Prometheus is for every application to have
direct instrumentation and have Prometheus discover it and scrape it directly. When
that isn’t possible, exporters are used, and you want to keep to that architecture as
much as possible. Having the exporter live right beside the application instance it
is exporting from is easier to manage as you grow, and keeps your failure domains
aligned. You will find that some exporters violate this guideline and offer the ability
to scrape multiple instances, but you can still deploy them in the intended fashion
and use the techniques shown in “metric_relabel_configs” on page 164 to remove any
extraneous labels.

Consul
You already installed and ran Consul in “Consul” on page 146. Assuming it is still
running, you can download and run the Consul Exporter with the commands in

187

Example 10-1. Because Consul usually runs on port 8500, you don’t need to do any
extra configuration as the Consul Exporter uses that port by default.

Example 10-1. Downloading and running the Consul Exporter

hostname $ wget https://github.com/prometheus/consul_exporter/releases/
 download/v0.3.0/consul_exporter-0.8.0.linux-amd64.tar.gz
hostname $ tar -xzf consul_exporter-0.8.0.linux-amd64.tar.gz
hostname $ cd consul_exporter-0.8.0.linux-amd64/
hostname $./consul_exporter
msg="Starting consul_exporter" version="(version=0.8.0, branch=HEAD,
 revision=176aef0f2d437e9fd1cb3a9e29dc4730de717e05)"
build_context="(go=go1.17.6, user=root@566e953b1722, date=20220210-16:54:21)"
msg="Listening on address" address=:9107

If you open http://localhost:9107/metrics in your browser, you will see the metrics
available.

The first metric you should make note of is consul_up. Some exporters will return an
HTTP error to Prometheus when fetching data fails, which results in up being set to
0 in Prometheus. But many exporters will still be successfully scraped in this scenario
and use a metric such as consul_up to indicate if there was a problem. Accordingly,
when alerting on Consul being down, you should check both up and consul_up. If
you stop Consul and then check the /metrics, you will see the value changes to 0, and
back to 1 again when Consul is started again.

consul_catalog_service_node_healthy tells you about the health of the various
services in the Consul node, similar to how kube-state-metrics (discussed in
“kube-state-metrics” on page 184) tells you about the health of nodes and containers
but across an entire Kubernetes cluster.

consul_serf_lan_members is the number of Consul agents in the cluster. You may
wonder if this could come just from the leader of the Consul cluster, but remember
that each agent might have a different view of how many members the cluster has if
there is an issue such as a network partition. In general, you should expose metrics
like this from every member of a cluster, and synthesize the value you want using
aggregation in PromQL.

There are also metrics about your Consul Exporter. consul_exporter_build_info is
its build information, and there are a variety of process_ and go_ metrics about the
process and the Go runtime. These are useful for debugging issues with the Consul
Exporter itself.

You can configure Prometheus to scrape the Consul Exporter, as shown in Exam‐
ple 10-2. Even though the scrape is going via an exporter, we used the job label of
consul, as it is really Consul we are scraping.

188 | Chapter 10: Common Exporters

Exporters can be considered as a form of proxy. They take in a
scrape request from Prometheus, fetch metrics from a process,
munge them into a format that Prometheus can understand, and
respond with them to Prometheus.

Example 10-2. prometheus.yml to scrape a local Consul Exporter

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: consul
 static_configs:
 - targets:
 - localhost:9107

MySQLd
The MySQLd Exporter is a typical exporter. To demonstrate it you will need to launch
an instance of MySQL and set up a Prometheus user.

You can then run MySQL and create the user, as shown in Example 10-3.

Example 10-3. Downloading and running the MySQL Exporter

hostname $ docker run -it --net=host --rm mysql mysql -h 127.0.0.1 -P 3306
 -uroot -pmy-secret-pw
mysql: [Warning] Using a password on the command line interface can be insecure.
mysql> CREATE USER 'prometheus'@'127.0.0.1' IDENTIFIED BY 'my-secret-prom-pw'
 WITH MAX_USER_CONNECTIONS 3;
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'prometheus'@'127.0.0.1';
Query OK, 0 rows affected (0.01 sec)

Create a my.cnf file with the credentials shown in Example 10-4.

Example 10-4. ~/.my.cnf with Prometheus credentials

[client]
user = prometheus
password = my-secret-prom-pw
host = 127.0.0.1

Next, you should download and run the MySQLd exporter, as shown in
Example 10-5.

MySQLd | 189

Example 10-5. Downloading and running the MySQLd Exporter

hostname $ wget https://github.com/prometheus/mysqld_exporter/releases/download/
 v0.9.0/mysqld_exporter-0.9.0.linux-amd64.tar.gz
hostname $ tar -xzf mysqld_exporter-0.9.0.linux-amd64.tar.gz
hostname $ cd mysqld_exporter-0.9.0.linux-amd64/
hostname $./mysqld_exporter

If you go to http://localhost:9104/metrics, you will see the metrics being produced.
Similar to the Consul Exporter’s consul_up, there is a mysql_up metric, indicating if
talking to MySQLd succeeded.

The name of the exporter is MySQLd Exporter. However, it also
works with forks of MySQL, such as MariaDB.

You will notice that many MySQL-related metrics are presents: mysql_global_vari
ables_ shows the value of global configuration variables, and mysql_global_status_
metrics show the current values returned by SHOW STATUS.

Exporter Default Ports
You may have noticed that Prometheus, the Node Exporter, Alertmanager, and other
exporters in this chapter have similar port numbers.

Back when there were only a handful of exporters, many had the same default
port number. Both the Node and HAProxy exporters used port 8080 by default, for
example. This was annoying when trying out or deploying Prometheus, so a wiki
page was started to keep the official exporters on different ports.

This organically grew to being a comprehensive list of exporters, and aside from some
users skipping over numbers, it now serves a purpose beyond its initial one.

You can configure the MySQLd Exporter to be scraped by Prometheus in the same
way as any other exporter, as you can see in Example 10-6.

Example 10-6. prometheus.yml to scrape a local MySQLd Exporter

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: mysqld
 static_configs:

190 | Chapter 10: Common Exporters

https://oreil.ly/Cx_7b
https://oreil.ly/Cx_7b

1 There is also https://oreil.ly/1phnz in this space.
2 The L in the ELK stack.

 - targets:
 - localhost:9104

Grok Exporter
Not all applications produce metrics in a form that can be converted into something
that Prometheus understands using an exporter. But such applications may produce
logs, and the Grok Exporter can be used to convert those into metrics.1 Grok is a way
to parse unstructured logs that is commonly used with Logstash.2 The Grok Exporter
reuses the same pattern language, allowing you to reuse patterns that you already
have.

Say that you had a simple log that looks like:

GET /foo 1.23
GET /bar 3.2
POST /foo 4.6

which was in a file called example.log. You could convert these logs into metrics
by using the Grok Exporter. First, download the 0.2.8 Grok Exporter Linux amd64
release and unzip it. Next, create a file called grok.yml with the content in Exam‐
ple 10-7.

Example 10-7. grok.yml to parse a simple logfile and produce metrics

global:
 config_version: 2
input:
 type: file
 path: example.log
 readall: true # Use false in production
grok:
 additional_patterns:
 - 'METHOD [A-Z]+'
 - 'PATH [^]+'
 - 'NUMBER [0-9.]+'
metrics:
 - type: counter
 name: log_http_requests_total
 help: HTTP requests
 match: '%{METHOD} %{PATH:path} %{NUMBER:latency}'
 labels:
 path: '{{.path}}'
 - type: histogram
 name: log_http_request_latency_seconds_total

Grok Exporter | 191

https://oreil.ly/1phnz
https://oreil.ly/6NaQL
https://oreil.ly/StPAZ
https://oreil.ly/StPAZ

 help: HTTP request latency
 match: '%{METHOD} %{PATH:path} %{NUMBER:latency}'
 value: '{{.latency}}'
server:
 port: 9144

Finally, run the Grok Exporter:

./grok_exporter -config grok.yml

We’ll break this down. First, there is some boilerplate:

global:
 config_version: 2

Next, you need to define the file to be read. Here we are using readall: true, so you
will see the same results as in this example. In production you would leave it to the
default of false so that the file is tailed:

input:
 type: file
 path: example.log
 readall: true # Use false in production

Grok works with patterns based on regular expressions. We have defined all of our
patterns here manually so you can better understand what’s going on, but you can
also reuse ones you already have:

grok:
 additional_patterns:
 - 'METHOD [A-Z]+'
 - 'PATH [^]+'
 - 'NUMBER [0-9.]+'

We have two metrics. The first is a counter called log_http_requests_total, which
has a label path:

metrics:
 - type: counter
 name: log_http_requests_total
 help: HTTP requests
 match: '%{METHOD} %{PATH:path} %{NUMBER:latency}'
 labels:
 path: '{{.path}}'

Our second is a histogram called log_http_request_latency_seconds_total, which
is observing the latency value, and has no labels:

 - type: histogram
 name: log_http_request_latency_seconds_total
 help: HTTP request latency
 match: '%{METHOD} %{PATH:path} %{NUMBER:latency}'
 value: '{{.latency}}'

192 | Chapter 10: Common Exporters

Finally, we define where we want the exporter to expose its metrics:

server:
 port: 9144

When you visit http://localhost:9144, among its output you will find the following
metrics:

HELP log_http_request_latency_seconds_total HTTP request latency
TYPE log_http_request_latency_seconds_total histogram
log_http_request_latency_seconds_total_bucket{le="0.005"} 0
log_http_request_latency_seconds_total_bucket{le="0.01"} 0
log_http_request_latency_seconds_total_bucket{le="0.025"} 0
log_http_request_latency_seconds_total_bucket{le="0.05"} 0
log_http_request_latency_seconds_total_bucket{le="0.1"} 1
log_http_request_latency_seconds_total_bucket{le="0.25"} 2
log_http_request_latency_seconds_total_bucket{le="0.5"} 3
log_http_request_latency_seconds_total_bucket{le="1"} 3
log_http_request_latency_seconds_total_bucket{le="2.5"} 3
log_http_request_latency_seconds_total_bucket{le="5"} 3
log_http_request_latency_seconds_total_bucket{le="10"} 3
log_http_request_latency_seconds_total_bucket{le="+Inf"} 3
log_http_request_latency_seconds_total_sum 0.57
log_http_request_latency_seconds_total_count 3
HELP log_http_requests_total HTTP requests
TYPE log_http_requests_total counter
log_http_requests_total{path="/bar"} 1
log_http_requests_total{path="/foo"} 2

As you can see, the Grok Exporter is more involved to configure than your typical
exporter; it’s closer to direct instrumentation in terms of effort, as you must indi‐
vidually define each metric you want to expose. You would generally run one per
application instance that needs to be monitored, and scrape it with Prometheus in the
usual way, as shown in Example 10-8.

Example 10-8. prometheus.yml to scrape a local Grok Exporter

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: grok
 static_configs:
 - targets:
 - localhost:9144

Grok Exporter | 193

3 As distinct from cases where it’s not possible for political reasons.
4 Simple Network Management Protocol, a standard for (among other things) exposing metrics on network

devices. It can also sometimes be found on other hardware.

Blackbox
While the recommended way to deploy exporters is to run one right beside each
application instance, there are cases where this is not possible for technical reasons.3

This is usually the case with blackbox monitoring—monitoring the system from the
outside with no special knowledge of the internals. We like to think of blackbox
monitoring as similar to smoke tests when unit testing; their purpose is primarily to
quickly tell you when things have gone hilariously wrong.

If you are monitoring whether a web service works from the standpoint of a user, you
usually want to monitor that through the same load balancers and virtual IP (VIP)
addresses the user is hitting. You can’t exactly run an exporter on a VIP as it is, well,
virtual. A different architecture is needed.

In Prometheus there is a class of exporters usually referred to as Blackbox-style or
SNMP-style, after the two primary examples of exporters that cannot run beside
an application instance. The Blackbox Exporter by necessity usually needs to run
somewhere else on the network, and there is no application instance to run on. For
the SNMP4 Exporter, it’s rare for you to be able to run your own code on a network
device—and if you could, you would use the Node Exporter instead.

So how are Blackbox-style or SNMP-style exporters different? Instead of you config‐
uring them to talk to only one target, they take in the target as a URL parameter. Any
other configuration is provided by you on the exporter side as usual. This keeps the
responsibilities of service discovery and scrape scheduling with Prometheus, and the
responsibility of translating metrics into a form understandable by Prometheus with
your exporter.

The Blackbox Exporter allows you to perform ICMP, TCP, HTTP, and DNS probing.
We will show you each in turn, but first you should get the Blackbox Exporter
running, as shown in Example 10-9.

Example 10-9. Downloading and running the Blackbox Exporter

hostname $ wget https://github.com/prometheus/blackbox_exporter/releases/download/
 v0.22.0/blackbox_exporter-0.22.0.linux-amd64.tar.gz
hostname $ tar -xzf blackbox_exporter-0.22.0.linux-amd64.tar.gz
hostname $ cd blackbox_exporter-0.22.0.linux-amd64/
hostname $ sudo ./blackbox_exporter
msg="Starting blackbox_exporter" version="(version=0.22.0,
 branch=HEAD, revision=0bbd65d1264722f7afb87a72ec4128b9214e5840)"

194 | Chapter 10: Common Exporters

5 Some pings can also work via UDP or TCP instead, but those are relatively rare.

msg="Loaded config file"
msg="Listening on address" address=:9115

If you visit http://localhost:9115/ in your browser, you should see a status page like the
one in Figure 10-1.

Figure 10-1. The Blackbox Exporter’s status page

ICMP
The Internet Control Message Protocol (ICMP) is a part of the Internet Protocol (IP).
In the context of the Blackbox exporter, it is the echo reply and echo request messages
that are of interest to you, more commonly known as ping.5

ICMP uses raw sockets so it requires more privileges than a typ‐
ical exporter, which is why Example 10-9 uses sudo. On Linux
you could instead give the Blackbox Exporter the CAP_NET_RAW
capability.

To start, you should ask the Blackbox Exporter to ping localhost by visiting http://
localhost:9115/probe?module=icmp&target=localhost in your browser, which should
produce something like:

Blackbox | 195

HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns
 lookup in seconds
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.000580415
HELP probe_duration_seconds Returns how long the probe took to complete
 in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.001044791
HELP probe_icmp_duration_seconds Duration of icmp request by phase
TYPE probe_icmp_duration_seconds gauge
probe_icmp_duration_seconds{phase="resolve"} 0.000580415
probe_icmp_duration_seconds{phase="rtt"} 0.000123794
probe_icmp_duration_seconds{phase="setup"} 0.000130416
HELP probe_icmp_reply_hop_limit Replied packet hop limit (TTL for ipv4)
TYPE probe_icmp_reply_hop_limit gauge
probe_icmp_reply_hop_limit 64
HELP probe_ip_addr_hash Specifies the hash of IP address. It's useful
 to detect if the IP address changes.
TYPE probe_ip_addr_hash gauge
probe_ip_addr_hash 1.751717746e+09
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 6
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 1

The key metric here is probe_success, which is 1 if your probe succeeded and 0
otherwise. This is similar to consul_up, and you should check that neither up nor
probe_success are 0 when alerting. There is an example of this in “for” on page 314.

The /metrics of the Blackbox Exporter provides metrics about the
Blackbox Exporter itself, such as how much CPU it has used. To
perform blackbox probes, you use /probe.

There are also other useful metrics that all types of probes produce. probe_ip_proto
col indicates the IP protocol used, IPv4 in this case; probe_ip_addr_hash is a hash
of the IP address, useful to detect when it changes; and probe_duration_seconds is
how long the entire probe took, including DNS resolution.

The name resolution used by Prometheus and the Blackbox
Exporter is DNS resolution, not the gethostbyname syscall. Other
potential sources of name resolution, such as /etc/hosts and
nsswitch.conf, are not considered by the Blackbox Exporter. This
can lead to the ping command working, but the Blackbox Exporter
failing due to not being able to resolve its target via DNS.

196 | Chapter 10: Common Exporters

If you look inside blackbox.yml, you will find the icmp module:

 icmp:
 prober: icmp

This says that there is a module called icmp, which you had requested with
the ?module=icmp in the URL. This module uses the icmp prober, with no additional
options specified. ICMP is quite simple, so only in niche use cases might you need to
specify dont_fragment or payload_size.

You can also try other targets. For example, to probe google.com you can visit http://
localhost:9115/probe?module=icmp& target=www.google.com in your browser. For the
icmp probe, the target URL parameter is an IP address or hostname.

You may find that this probe fails, with output like:

HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns
 lookup in seconds
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.018805905
HELP probe_duration_seconds Returns how long the probe took to complete
 in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.019061888
HELP probe_icmp_duration_seconds Duration of icmp request by phase
TYPE probe_icmp_duration_seconds gauge
probe_icmp_duration_seconds{phase="resolve"} 0.018805905
probe_icmp_duration_seconds{phase="rtt"} 0
probe_icmp_duration_seconds{phase="setup"} 9.8677e-05
HELP probe_ip_addr_hash Specifies the hash of IP address. It's useful to
detect if the IP address changes.
TYPE probe_ip_addr_hash gauge
probe_ip_addr_hash 4.125764906e+09
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 6
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 0

probe_success is 0 here, indicating the failure. Notice that probe_ip_protocol is 6,
indicating IPv6. In this case the machine we are using doesn’t have a working IPv6
setup. Why is the Blackbox Exporter using IPv6?

When resolving the Blackbox Exporter, targets will prefer a returned IPv6 address if
there is one; otherwise, it will use an IPv4 address. google.com has both, so IPv6 is
chosen and fails on our machine.

You can see this in more detail if you add &debug=true on to the end of the URL, giv‐
ing http://localhost:9115/probe?module=icmp&target=www.google.com&debug=true,
which will produce output like:

Blackbox | 197

Logs for the probe:
... module=icmp target=www.google.com level=info
 msg="Beginning probe" probe=icmp timeout_seconds=119.5
... module=icmp target=www.google.com level=info
 msg="Resolving target address" preferred_ip_protocol=ip6
... module=icmp target=www.google.com level=info
 msg="Resolved target address" ip=2a00:1450:400c:c07::69
... module=icmp target=www.google.com level=info
 msg="Creating socket"
... module=icmp target=www.google.com level=info
 msg="Creating ICMP packet" seq=10 id=3483
... module=icmp target=www.google.com level=info
 msg="Writing out packet"
... module=icmp target=www.google.com level=warn
 msg="Error writing to socket" err="write udp
 [::]:3->[2a00:1450:400c:c07::69]:0: sendto: network is unreachable"
... module=icmp target=www.google.com level=error
 msg="Probe failed" duration_seconds=0.001902969

Metrics that would have been returned:
HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns
 lookup in seconds
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.001635165
HELP probe_duration_seconds Returns how long the probe took to complete
 in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.001902969
HELP probe_icmp_duration_seconds Duration of icmp request by phase
TYPE probe_icmp_duration_seconds gauge
probe_icmp_duration_seconds{phase="resolve"} 0.001635165
probe_icmp_duration_seconds{phase="rtt"} 0
probe_icmp_duration_seconds{phase="setup"} 9.6612e-05
HELP probe_ip_addr_hash Specifies the hash of IP address. It's useful to
 detect if the IP address changes.
TYPE probe_ip_addr_hash gauge
probe_ip_addr_hash 4.142542525e+09
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 6
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 0

Module configuration:
prober: icmp
http:
 ip_protocol_fallback: true
 follow_redirects: true
 enable_http2: true
tcp:
 ip_protocol_fallback: true

198 | Chapter 10: Common Exporters

6 Similar to Prometheus, you can also send a SIGHUP to the Blackbox Exporter to have it reload its
configuration.

icmp:
 ip_protocol_fallback: true
 ttl: 64
dns:
 ip_protocol_fallback: true
 recursion_desired: true

The debug output is extensive, and by carefully reading through it you can under‐
stand exactly what the probe is doing. The error you see here is from the sendto
syscall, which cannot assign an IPv6 address. To prefer IPv4 instead, you can add a
new module with the preferred_ip_protocol: ipv4 option to blackbox.yml:

 icmp_ipv4:
 prober: icmp
 icmp:
 preferred_ip_protocol: ip4

After restarting the Blackbox Exporter,6 if you use this module via http://local‐
host:9115/probe?module=icmp_ipv4&target=www.google.com, it will now work via
IPv4.

TCP
The Transmission Control Protocol is the TCP in TCP/IP. Many standard protocols
use it, including websites (HTTP), email (SMTP), remote login (Telnet and SSH), and
chat (IRC). The tcp probe of the Blackbox Exporter allows you to check TCP serv‐
ices, and perform simple conversations for those that use line-based text protocols.

To start, you can check if your local SSH server is listening on port 22 with http://
localhost:9115/probe?module=tcp_connect&target=localhost:22:

HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns lookup
 in seconds
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.000202381
HELP probe_duration_seconds Returns how long the probe took to complete in
 seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.000881654
HELP probe_failed_due_to_regex Indicates if probe failed due to regex
TYPE probe_failed_due_to_regex gauge
probe_failed_due_to_regex 0
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 4
HELP probe_success Displays whether or not the probe was a success

Blackbox | 199

7 However, the debug information for the most recent probes is available from the Blackbox Exporter’s status
page.

TYPE probe_success gauge
probe_success 1

This is quite similar to the metrics produced by the ICMP probe, and you can see
that this probe succeeded as probe_success is 1. The definition of the tcp_connect
module in blackbox.yml is:

 tcp_connect:
 prober: tcp

This will try to connect to your target, and once it is connected immediately, it will
close the connection. The ssh_banner module goes further, checking for a particular
response from the remote server:

 ssh_banner:
 prober: tcp
 tcp:
 query_response:
 - expect: "^SSH-2.0-"

As the very start of an SSH session is in plain text, you can check for this part of
the protocol with the tcp probe. This is better than tcp_connect, as you are not only
checking that the TCP port is open, but that the server on the other end is responding
with an SSH banner.

If your server returned something different, the expect regex will not match, and
probe_success will be 0. In addition, probe_failed_due_to_regex would be 1. Since
Prometheus is a metrics-based system, the full debug output cannot be saved, as
that would be event logging.7 However, the Blackbox Exporter can provide a small
number of metrics to help you to piece together what went wrong after the fact.

If you find that every service needs a different module, consider
standardizing what your health checks look like across services.
If a service exposes a /metrics page, then there is not much need
for basic connectivity checks with the Blackbox Exporter, as Prom‐
etheus’s scrapes will already provide that.

The tcp probe can also connect via TLS. Add a tcp_connect_tls to your black‐
box.yml file with the following configuration:

 tcp_connect_tls:
 prober: tcp
 tcp:
 tls: true

200 | Chapter 10: Common Exporters

8 443 is the standard port for HTTPS.
9 More exactly, the first certificate that will expire in your certificate chain.

10 At least for HTTP versions prior to 2.0.
11 You can even include URL parameters, if they are appropriately encoded.

12 The http_2xx module is incidentally the default module name if you don’t provide one as a URL parameter.

After restarting the Blackbox Exporter, if you now visit http://localhost:9115/probe?
module=tcp_connect_tls&target=www.oreilly.com:443, you can check if O’Reilly’s web‐
site can be contacted with HTTPS.8 For the tcp prober, the target URL parameter is
an IP address or hostname, followed by a colon, and then the port number.

You may notice among the metrics output:

HELP probe_ssl_last_chain_expiry_timestamp_seconds Returns last SSL chain
 expiry in timestamp
TYPE probe_ssl_last_chain_expiry_timestamp_seconds gauge
probe_ssl_last_chain_expiry_timestamp_seconds 1.686095999e+09

probe_ssl_last_chain_expiry_timestamp_seconds is produced as a side effect of
probing, indicating when your TLS/SSL certificate9 will expire. You can use this to
catch expiring certificates before they become outages.

While HTTP is a line-oriented text protocol10 that you could use the tcp probe with,
there is an http probe that is more suitable for this purpose.

HTTP
The HyperText Transfer Protocol (HTTP) is the basis for the modern web, and
likely what most of the services you provide use. While most monitoring of web
applications is best done by Prometheus scraping metrics over HTTP, sometimes you
will want to perform blackbox monitoring of your HTTP services.

The http prober takes a URL11 for the target URL parameter. If you visit http://local‐
host:9115/probe?module=http_2xx&target=https://www.oreilly.com/, you can check
O’Reilly’s website over HTTPS using the http_2xx module,12 producing output
similar to:

HELP probe_dns_lookup_time_seconds Returns the time taken for probe
 dns lookup in seconds
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.001481084
HELP probe_duration_seconds Returns how long the probe took to complete
 in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.165316519
HELP probe_failed_due_to_regex Indicates if probe failed due to regex
TYPE probe_failed_due_to_regex gauge

Blackbox | 201

probe_failed_due_to_regex 0
HELP probe_http_content_length Length of http content response
TYPE probe_http_content_length gauge
probe_http_content_length -1
HELP probe_http_duration_seconds Duration of http request by phase, summed
 over all redirects
TYPE probe_http_duration_seconds gauge
probe_http_duration_seconds{phase="connect"} 0.02226464
probe_http_duration_seconds{phase="processing"} 0.05238605
probe_http_duration_seconds{phase="resolve"} 0.001481084
probe_http_duration_seconds{phase="tls"} 0.043717698
probe_http_duration_seconds{phase="transfer"} 0.044905889
HELP probe_http_last_modified_timestamp_seconds Returns the Last-Modified
 HTTP response header in unixtime
TYPE probe_http_last_modified_timestamp_seconds gauge
probe_http_last_modified_timestamp_seconds 1.665390603e+09
HELP probe_http_redirects The number of redirects
TYPE probe_http_redirects gauge
probe_http_redirects 0
HELP probe_http_ssl Indicates if SSL was used for the final redirect
TYPE probe_http_ssl gauge
probe_http_ssl 1
HELP probe_http_status_code Response HTTP status code
TYPE probe_http_status_code gauge
probe_http_status_code 200
HELP probe_http_uncompressed_body_length Length of uncompressed response body
TYPE probe_http_uncompressed_body_length gauge
probe_http_uncompressed_body_length 75719
HELP probe_http_version Returns the version of HTTP of the probe response
TYPE probe_http_version gauge
probe_http_version 2
HELP probe_ip_addr_hash Specifies the hash of IP address. It's useful to
 detect if the IP address changes.
TYPE probe_ip_addr_hash gauge
probe_ip_addr_hash 1.793027101e+09
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 4
HELP probe_ssl_earliest_cert_expiry Returns earliest SSL cert expiry
 in unixtime
TYPE probe_ssl_earliest_cert_expiry gauge
probe_ssl_earliest_cert_expiry 1.697068799e+09
HELP probe_ssl_last_chain_expiry_timestamp_seconds Returns last SSL chain
 expiry in timestamp seconds
TYPE probe_ssl_last_chain_expiry_timestamp_seconds gauge
probe_ssl_last_chain_expiry_timestamp_seconds 1.697068799e+09
HELP probe_ssl_last_chain_info Contains SSL leaf certificate information
TYPE probe_ssl_last_chain_info gauge
probe_ssl_last_chain_info{fingerprint_sha256="849c8863b"} 1
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 1

202 | Chapter 10: Common Exporters

13 Presuming you have a working IPv6 setup; if not, add preferred_ip_protocol: ip4.

14 Unless follow_redirects is set to false.

HELP probe_tls_version_info Contains the TLS version used
TYPE probe_tls_version_info gauge
probe_tls_version_info{version="TLS 1.3"} 1

You can see probe_success, but also a number of other useful metrics for debugging,
such as the status code, HTTP version, and timings for different phases of the
request.

The http probe has many options to both affect how the request is made, and
whether the response is considered successful. You can specify HTTP authentication,
headers, POST body, and then in the response, check that the status code, HTTP
version, and body are acceptable.

For example, we may want to test that users of http://www.oreilly.com end up redi‐
rected to an HTTPS website, with a 200 status code, and that the word “Prometheus”
is in the body. To do so you could create a module like:

 http_200_ssl_prometheus:
 prober: http
 http:
 valid_status_codes: [200]
 fail_if_not_ssl: true
 fail_if_not_matches_regexp:
 - oreillymedia

Visiting http://localhost:9115/probe?module=http_200_ssl_prometheus&target=https://
oreilly.com in your browser, you should see that this works as probe_success is 1.
You could also use the same request against http://prometheus.io if you visit http://
localhost:9115/probe?module=http_200_ssl_prometheus&target=http://prometheus.io
in your browser.13

While the Blackbox Exporter will follow HTTP redirects,14 not all
features work perfectly across redirects.

This example is a little contrived, but each module of the Blackbox Exporter is a
specific test that you can run against different targets by providing different target
URL parameters as you did here with http://www.oreilly.com and http://prometheus.io.
For example, you might check that each frontend application instance serving your
website is returning the right result. If different services need different tests, then you
can create modules for each of them. It is not possible to override modules via URL

Blackbox | 203

http://www.oreilly.com
http://localhost:9115/probe?module=http_200_ssl_prometheus&target=https://oreilly.com
http://localhost:9115/probe?module=http_200_ssl_prometheus&target=https://oreilly.com
http://prometheus.io
http://www.oreilly.com
http://prometheus.io

15 Which would be unwise from a security standpoint.
16 While DNS usually uses UDP, it can also use TCP in cases such as for large responses. Unfortunately, many

site operators are not aware of this and block TCP on port 53, which is the DNS port.
17 Which is offered on the IPs 8.8.8.8, 8.8.4.4, 2001:4860:4860::8888, and 2001:4860:4860::8844.

parameters, as that would lead to the Blackbox Exporter being an open proxy15 and
would confuse the division of responsibilities between Prometheus and exporters.

The http probe is the most configurable of the Blackbox Exporter’s probes (the
documentation lists all of the options). While flexible, the Blackbox Exporter cannot
handle all possible use cases, as it is a relatively simple HTTP probe at the end of
the day. If you need something more sophisticated, you may need to write your own
exporter, or take advantage of existing exporters such as the WebDriver Exporter,
which simulates a browser visiting a URL.

DNS
The dns probe is primarily for testing DNS servers; for example, checking that all of
your DNS replicas are returning results.

If you wanted to test that your DNS servers were responding over TCP,16 you could
create a module in your blackbox.yml like this:

 dns_tcp:
 prober: dns
 dns:
 transport_protocol: "tcp"
 query_name: "www.prometheus.io"

After restarting the Blackbox Exporter, you can visit http://localhost:9115/probe?mod‐
ule=dns_tcp&target=8.8.8.8 to check if Google’s Public DNS service17 works via TCP.
Note that the target URL parameter is the DNS server that is talked to, and the
query_name is the DNS request sent to the DNS server. This is the same as if you ran
the command dig -tcp @8.8.8.8 www.prometheus.io.

For the dns prober, the target URL parameter is an IP address or hostname, fol‐
lowed by a colon, and then the port number. You can also provide just the IP address
or hostname, in which case the standard DNS port of 53 will be used.

Aside from testing DNS servers, you could also use a dns probe to confirm that
specific results are being returned by DNS resolution. But usually you want to go
further and communicate to the returned service via HTTP, TCP, or ICMP, in which
case one of those probes makes more sense as you get the DNS check for free.

An example of using the dns probe to check for specific results would be to check that
your MX records18 have not disappeared.

204 | Chapter 10: Common Exporters

https://oreil.ly/Jj0mf
https://oreil.ly/qTbHY

18 Used for email, MX stands for Mail eXchanger.
19 We learned DNS from these RFCs; they’re a little outdated but still give a good sense of how DNS operates.

You could create a module in your blackbox.yml like this:

 dns_mx_present_rp_io:
 prober: dns
 dns:
 query_name: "prometheus.io"
 query_type: "MX"
 validate_answer_rrs:
 fail_if_not_matches_regexp:
 - ".+"

After restarting the Blackbox Exporter, you can visit http://localhost:9115/probe?mod‐
ule=dns_mx_present_rp_io&target=8.8.8.8 to check that prometheus.io has MX
records. Note that as the query_name is specified per module, you will need a module
for every domain that you want to check. We are using 8.8.8.8 here, as Google’s Public
DNS is a public DNS resolver, but you could also use a local resolver.

The dns probe has more features intended to help check for aspects of DNS respon‐
ses, such as authority and additional records, which you can find out more about
in the documentation. For a better understanding of DNS, we recommend RFCs
1034 and 1035,19 or a book such as DNS and BIND by Paul Albitz and Cricket Liu
(O’Reilly).

Prometheus Configuration
As you have seen, the Blackbox Exporter takes a module and target URL parameter
on the /probe endpoint. Using the params and metrics_path, as discussed in “How to
Scrape” on page 162, you can provide these in a scrape config, but that would mean
having a scrape config per target, which would be unwieldy as you could not take
advantage of Prometheus’s ability to do service discovery.

The good news is that you can take advantage of service discovery, as the
__param_<name> label can be used to provide URL parameters in relabeling. In
addition, the instance and __address__ labels are distinct, as discussed in “job,
instance, and __address__” on page 158, so you can have Prometheus talk to the
Blackbox Exporter while having an instance label of your actual target.

Example 10-10 shows an example of this in practice.

Example 10-10. prometheus.yml to check if several websites work

scrape_configs:
 - job_name: blackbox

Blackbox | 205

https://oreil.ly/3pY9E
https://oreil.ly/y7Rra
https://oreil.ly/dtwcY

 metrics_path: /probe
 params:
 module: [http_2xx]
 static_configs:
 - targets:
 - http://www.prometheus.io
 - http://www.robustperception.io
 - http://demo.robustperception.io
 relabel_configs:
 - source_labels: [__address__]
 target_label: __param_target
 - source_labels: [__param_target]
 target_label: instance
 - target_label: __address__
 replacement: 127.0.0.1:9115

To break it down:

 - job_name: 'blackbox'
 metrics_path: /probe
 params:
 module: [http_2xx]

A default job label, custom path, and one URL parameter are specified:

 static_configs:
 - targets:
 - https://www.prometheus.io
 - https://www.oreilly.com
 - https://demo.do.prometheus.io

There are three websites that you will be probing:

 relabel_configs:
 - source_labels: [__address__]
 target_label: __param_target
 - source_labels: [__param_target]
 target_label: instance
 - target_label: __address__
 replacement: 127.0.0.1:9115

The relabel_configs is where the magic happens. First, the __address__ label
becomes the target URL parameter and secondly also the instance label. At this
point, the instance label and target URL parameter have the value you want, but
the __address__ is still a URL rather than the Blackbox Exporter. The final relabeling
action sets the __address__ to the host and port of the local Blackbox Exporter.

If you run Prometheus with this configuration and look at the Targets status page,
you will see something like Figure 10-2. The endpoint has the desired URL parame‐
ters, and the instance label is the URL.

206 | Chapter 10: Common Exporters

20 Indeed, in Figure 10-2 the probe of http://www.prometheus.io is failing, as our machine has a broken IPv6
setup.

Figure 10-2. The Blackbox Exporter’s status page

That the State is UP for the Blackbox Exporter does not mean that
the probe was successful, merely that the Blackbox Exporter was
scraped successfully.20 You need to check that probe_success is 1.

This approach is not limited to static_configs. You can use any other service
discovery mechanism (as discussed in Chapter 8). For example, building on Exam‐
ple 8-19, which scraped the Node Exporter for all nodes registered in Consul, Exam‐
ple 10-11 will check that SSH is responding for all nodes registered in Consul.

Blackbox | 207

http://www.prometheus.io

21 Specified by the --timeout-offset command-line flag.

Example 10-11. Checking SSH on all nodes registered in Consul

scrape_configs:
 - job_name: node
 metrics_path: /probe
 params:
 module: [ssh_banner]
 consul_sd_configs:
 - server: 'localhost:8500'
 relabel_configs:
 - source_labels: [__meta_consul_address]
 regex: '(.*)'
 replacement: '${1}:22'
 target_label: __param_target
 - source_labels: [__param_target]
 target_label: instance
 - target_label: __address__
 replacement: 127.0.0.1:9115

The power of this approach allows you to reuse service discovery for not just scraping
of /metrics, but also to do blackbox monitoring of your applications.

Blackbox Timeouts
You may be wondering how to configure timeouts for your probes. The good news
is that the Blackbox prober determines the timeout automatically based on the
scrape_timeout in Prometheus.

Prometheus sends an HTTP header called X-Prometheus-Scrape-Timeout-Seconds
with every scrape. The Blackbox Exporter uses this for its timeouts, less a buffer.21 The
end result is that the Blackbox Exporter will usually return with some metrics that
will be useful in debugging in the event of the target being slow, rather than the scrape
as a whole failing.

You can reduce the timeout further using the timeout field in blackbox.yml.

Now that you have an idea of the sorts of exporters you will run into, you’re ready to
learn how to pull metrics from your existing monitoring systems.

208 | Chapter 10: Common Exporters

CHAPTER 11

Working with Other Monitoring Systems

In an ideal world all of your applications would be directly exposing Prometheus
metrics, but this is unlikely to be the world you inhabit. You may have other monitor‐
ing systems already in use, and doing a big switchover one day to Prometheus is not
practical.

The good news is that among the hundreds of exporters for Prometheus there are
several that convert data from other monitoring systems into the Prometheus format.
While your ideal end goal would be to move completely to Prometheus, exporters
like the ones you’ll learn about in this chapter are very helpful when you are still
transitioning.

Other Monitoring Systems
Monitoring systems vary in how compatible they are with Prometheus; some require
notable effort, while others require close to none. For example, InfluxDB has a
data model fairly similar to Prometheus, so you can have your application push
the InfluxDB line protocol to the InfluxDB Exporter, which can then be scraped by
Prometheus.

Other systems like collectd do not have labels, but it is possible to automatically
convert the metrics it outputs into an OK Prometheus metric with no additional
configuration using the Collectd Exporter. As of version 5.7, collectd even includes
this natively with the Write Prometheus plug-in.

But not all monitoring systems have data models that can be automatically converted
into reasonable Prometheus metrics. Historically, Graphite did not not support key-
value labels, and some configuration labels can be extracted from the dotted strings it

209

https://oreil.ly/NPmXE
https://oreil.ly/ErtjW
https://oreil.ly/mWhRg

1 Version 1.1.0 of Graphite added tag supports that are ingested by the Graphite Exporter as labels.
2 Management Information Base, basically a schema for SNMP objects.

uses using the Graphite Exporter.1 StatsD has basically the same dotted-string model
as Graphite; StatsD uses events rather than metrics, so the StatsD Exporter aggregates
the events into metrics, and can also extract labels.

In the Java/JVM space, JMX (Java Management eXtensions) is a standard often
used for exposing metrics, but how it is used varies quite a bit from application to
application. The JMX Exporter has OK defaults, but given the lack of standardization
of the mBean structure, the only sane way to configure it is via regular expressions.
The good news is that there are a variety of example configurations provided, and
that the JMX Exporter is intended to run as a Java agent so you don’t have to manage
a separate exporter process.

SNMP actually has a data model that is quite close to that of Prometheus, and by
using MIBs,2 SNMP metrics can be automatically produced by the SNMP Exporter.
The bad news is twofold. First, MIBs from vendors are often not freely available,
so you need to acquire the MIBs yourself and use the generator included with the
SNMP Exporter to convert the MIBs into a form the SNMP Exporter can understand.
Second, many vendors follow the letter of the SNMP specification but not the spirit,
so additional configuration and/or munging with PromQL is sometimes required.
The SNMP Exporter is a Blackbox/SNMP-style exporter, as was discussed in “Black‐
box” on page 194, so unlike almost all other exporters, you typically run one per
Prometheus rather than one per application instance.

SNMP is a very chatty network protocol. It is advisable to have
SNMP Exporters as close as you can on the network to the network
devices they are monitoring to mitigate this. Furthermore, many
SNMP devices can speak the SNMP protocol but not return met‐
rics in anything resembling a reasonable time frame. You may need
to be judicious in what metrics you request and generous in your
scrape_interval.

There are also exporters you can use to extract metrics from a variety of software as
a service (SaaS) monitoring systems, including the CloudWatch Exporter, New Relic
Exporter, Pingdom Exporter, and Stackdriver Exporter. One thing to watch with such
exporters is that there may be rate limits and financial costs for using the APIs they
access.

The NRPE Exporter is an SNMP/Blackbox-style exporter that allows you to run
NRPE checks. NRPE stands for Nagios Remote Program Execution, a way to run
Nagios checks on remote machines. While many existing checks in a Nagios-style

210 | Chapter 11: Working with Other Monitoring Systems

https://oreil.ly/6ah0Q
https://oreil.ly/ECuBA
https://oreil.ly/A549a
https://oreil.ly/HW3wu
https://oreil.ly/lQ9Fe
https://oreil.ly/YWPcw
https://oreil.ly/YWPcw
https://oreil.ly/UU4br
https://oreil.ly/JH2T9
https://oreil.ly/BBkqg

3 Previously known as Yammer metrics.

monitoring setup can be replaced by metrics from the Node and other exporters, you
may have some custom checks that are a bit harder to migrate. The NRPE Exporter
gives you a transition option here, allowing you to later convert these checks to
another solution such as the textfile collector, as discussed in “Textfile Collector” on
page 134.

Integration with other monitoring systems isn’t limited to running separate exporters;
there are also integrations with popular instrumentation systems such as Dropwizard
metrics.3 The Java client has an integration that can pull metrics from Dropwizard
metrics using its reporting feature that will then appear alongside any direct instru‐
mentation you have on /metrics.

Dropwizard can also expose its metrics via JMX. If possible (i.e.,
you control the codebase), you should prefer using the Java client’s
Dropwizard integration over JMX, since going via JMX has higher
overhead and requires more configuration.

InfluxDB
The InfluxDB Exporter accepts the InfluxDB line protocol that was added in version
0.9.0 of InfluxDB. The protocol works over HTTP, so the same TCP port can be used
both to accept writes and serve /metrics. To run the InfluxDB Exporter, follow the
steps in Example 11-1.

Example 11-1. Downloading and running the InfluxDB Exporter

hostname $ wget https://github.com/prometheus/influxdb_exporter/releases/download/
 v0.10.0/influxdb_exporter-0.10.0.linux-amd64.tar.gz
hostname $ tar -xzf influxdb_exporter-0.10.0.linux-amd64.tar.gz
hostname $ cd influxdb_exporter-0.10.0.linux-amd64/
hostname $./influxdb_exporter
msg="Starting influxdb_exporter" version="(version=0.10.0, branch=
 HEAD, revision=6ce7ff5e3f584eb9c2019be71ecb9e586ba3d83e)"
msg="Build context" context="(go=go1.18.3, user=root@de8ee7c667
 c4, date=20220708-19:34:59)"

InfluxDB | 211

https://oreil.ly/IdIHo

You can then direct your existing applications that speak the InfluxDB line protocol
to use the InfluxDB Exporter. To send a metric by hand with labels, you can do:

curl -XPOST 'http://localhost:9122/write' --data-binary \
 'example_metric,foo=bar value=43 1517339868000000000'

If you then visit http://localhost:9122/metrics in your browser, among the output you
will see:

HELP example_metric InfluxDB Metric
TYPE example_metric untyped
example_metric{foo="bar"} 43

You may notice that the timestamp that you sent to the exporter is not exposed. There
are very few valid use cases for /metrics to expose timestamps, as scrapes are meant
to synchronously gather metrics representing the application state at scrape time.
When working with other monitoring systems this is often not the case, and using
timestamps would be valid. At the time of writing only the Java client library supports
timestamps for custom collectors. When metrics are exported without timestamps,
Prometheus will use the time at which the scrape happens. The InfluxDB Exporter
will garbage collect the point after a few minutes and stop exposing it. These are
the challenges you face when you convert from push to pull. On the other hand,
converting from pull to push is quite simple, as shown in Example 4-13.

You can scrape the InfluxDB Exporter like any other exporter, as shown in
Example 11-2.

Example 11-2. prometheus.yml to scrape a local InfluxDB Exporter

global:
 scrape_interval: 10s
scrape_configs:
 - job_name: application_name
 static_configs:
 - targets:
 - localhost:9122

StatsD
StatsD takes in events and aggregates them over time into metrics. You can think of
sending an event to StatsD as like calling inc on a counter or observe on a summary.
The StatsD Exporter does just that, converting your StatsD events into Prometheus
client library metrics and instrumentation calls.

You can run the StatsD Exporter by following the steps in Example 11-3.

212 | Chapter 11: Working with Other Monitoring Systems

4 nc is a handy networking utility whose full name is netcat. You may need to install it if you don’t have it
already.

Example 11-3. Downloading and running the StatsD Exporter

hostname $ wget https://github.com/prometheus/statsd_exporter/releases/download/
 v0.22.8/statsd_exporter-0.22.8.linux-amd64.tar.gz
hostname $ tar -xzf statsd_exporter-0.22.8.linux-amd64.tar.gz
hostname $ cd statsd_exporter-0.22.8.linux-amd64/
hostname $./statsd_exporter
msg="Starting StatsD -> Prometheus Exporter" version="(version=0.22.8, branch=
 HEAD, revision=aecad1a2faf31d4a6c27323a29ca8c7a23d88f6b)"
msg="Build context" context="(go=go1.18.6, user=root@56d5d8c6d
 3d1, date=20220913-14:49:05)"
msg="Accepting StatsD Traffic" udp=:9125 tcp=:9125 unixgram=
msg="Accepting Prometheus Requests" addr=:9102

As StatsD uses a custom TCP and UDP protocol, you need different ports for sending
events than for scraping /metrics.

You can send a gauge by hand with:4

echo 'example_gauge:123|g' | nc localhost 9125

which will appear on http://localhost:9102/metrics as:

HELP example_gauge Metric autogenerated by statsd_exporter.
TYPE example_gauge gauge
example_gauge 123

You can also send counter increments and summary/histogram observations:

echo 'example_counter_total:1|c' | nc localhost 9125
echo 'example_latency_total:20|ms' | nc localhost 9125

The StatsD protocol isn’t fully specified; many implementations only support integer
values. While the StatsD Exporter does not have this limitation, note that many
metrics will not be in the base units you are used to with Prometheus.

You can also extract labels, as StatsD is often used with the Graphite dotted string
notation, where position indicates meaning. app.http.requests.eu-west-1./foo
might, for example, mean what would be app_http_requests_total{region="eu-
west-1",path="/foo"} in Prometheus. To be able to map from such a string, you
need to provide a mapping file in mapping.yml, such as:

mappings:
- match: app.http.requests.*.*
 name: app_http_requests_total
 labels:
 region: "${1}"
 path: "${2}"

StatsD | 213

5 One of the reasons that Prometheus exists is due to scaling issues that SoundCloud had with many applica‐
tions sending to one StatsD.

and then run the StatsD Exporter using it:

./statsd_exporter -statsd.mapping-config mapping.yml

If you now send requests following that pattern to the StatsD Exporter, they will be
appropriately named and labeled:

echo 'app.http.requests.eu-west-1./foo:1|c' | nc localhost 9125
echo 'app.http.requests.eu-west-1./bar:1|c' | nc localhost 9125

If you visit http://localhost:9102/metrics, it will now contain:

HELP app_http_requests_total Metric autogenerated by statsd_exporter.
TYPE app_http_requests_total counter
app_http_requests_total{path="/bar",region="eu-west-1"} 1
app_http_requests_total{path="/foo",region="eu-west-1"} 1

The Graphite Exporter has a similar mechanism to convert dotted strings into labels.

You may end up running the StatsD Exporter even after you have completed your
transition to Prometheus if you are using languages such as PHP and Perl for web
applications. As mentioned in “Multiprocess with Gunicorn” on page 68, Prometheus
presumes a multithreaded model with long-lived processes. You typically use lan‐
guages like PHP in a way that is not only multiprocess, but also often with processes
that only live for a single HTTP request. While an approach such as the Python
client uses for multiprocess deployments is theoretically possible for typical PHP
deployments, you may find that the StatsD Exporter is more practical. There is also
the prom-aggregation-gateway in this space.

We would recommend for exporters like the InfluxDB, Graphite, StatsD, and Collectd
Exporters that convert from push to pull that you have one exporter per application
instance and the same lifecycle as the application. You should start, stop, and restart
the exporter at the same time as you start, stop, and restart the application instance.
That way is easier to manage, avoids issues with labels changing, and keeps the
exporter from becoming a bottleneck.5

While there are hundreds of exporters on offer, you may find yourself needing to
write or extend one yourself. The next chapter will show you how to write exporters.

214 | Chapter 11: Working with Other Monitoring Systems

https://oreil.ly/qrGYk

1 These metrics are also exported natively by Consul. This example predates these metrics being natively
exposed by Consul.

CHAPTER 12

Writing Exporters

Sometimes you will not be able to either add direct instrumentation to an application,
nor find an existing exporter that covers it. This leaves you with having to write an
exporter yourself. The good news is that exporters are relatively easy to write. The
hard part is figuring out what the metrics exposed by applications mean. Units are
often unknown, and documentation, if it exists at all, can be vague. In this chapter
you will learn how to write exporters.

Consul Telemetry
We are going to write a small exporter for Consul to demonstrate the process. We
already saw Consul and the Consul Exporter in “Consul” on page 187, so let’s create a
simple exporter with metrics from the telemetry API.1

While you can write exporters in any programming language, the majority are writ‐
ten in Go, and that is the language we will use here. However, you will find a small
number of exporters written in Python, and an even smaller number in Java.

If your Consul is not running, start it again following the instructions in Example 8-8.
If you visit http://localhost:8500/v1/agent/metrics, you will see the JSON output that
you will be working with, which is similar to Example 12-1. Conveniently, Consul
provides a Go library that you can use, so you don’t have to worry about parsing the
JSON yourself.

215

2 Just because something is called a counter does not mean it is a counter. For example, Dropwizard has
counters that can go down, so depending on how the counter is used in practice, it may be a counter, gauge, or
untyped in Prometheus terms.

3 If only some of the Samples were timers, you would have to choose between exposing them as is or
maintaining a list of which metrics are latencies and which weren’t.

Example 12-1. An abbreviated example output from a Consul agent’s metrics output

{
 "Timestamp": "2018-01-31 14:42:10 +0000 UTC",
 "Gauges": [
 {
 "Name": "consul.autopilot.failure_tolerance",
 "Value": 0,
 "Labels": {}
 }
],
 "Points": [],
 "Counters": [
 {
 "Name": "consul.raft.apply",
 "Count": 1,
 "Sum": 2, "Min": 1, "Max": 1, "Mean": 1, "Stddev": 0,
 "Labels": {}
 }
],
 "Samples": [
 {
 "Name": "consul.fsm.coordinate.batch-update",
 "Count": 1,
 "Sum": 0.13156799972057343,
 "Min": 0.13156799972057343, "Max": 0.13156799972057343,
 "Mean": 0.13156799972057343, "Stddev": 0,
 "Labels": {}
 }
]
}

You are in luck that Consul has split out the counters and gauges for you.2 The
Samples also look like you can use the Count and Sum in a summary metric. Looking
at all the Samples again, we have a suspicion that they are tracking latency. Digging
through the documentation confirms that they are timers, which means a Prometheus
summary (see “The Summary” on page 50). The timers are also all in milliseconds, so
we can convert them to seconds.3 While the JSON has a field for labels, none are used,
so you can ignore that. Aside from that, the only other thing you need to do is ensure
any invalid characters in the metric names are sanitized.

You now know the logic you need to apply to the metrics that Consul exposes, so you
can write your exporter as in Example 12-2.

216 | Chapter 12: Writing Exporters

https://oreil.ly/6RY1Y

Example 12-2. consul_metrics.go, an exporter for Consul metrics written in Go

package main

import (
"log"
"net/http"
"regexp"

"github.com/hashicorp/consul/api"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"

)

var (
up = prometheus.NewDesc(

"consul_up",
"Was talking to Consul successful.",
nil, nil,

)
invalidChars = regexp.MustCompile("[^a-zA-Z0-9:_]")

)

type ConsulCollector struct {
}

// Implements prometheus.Collector.
func (c ConsulCollector) Describe(ch chan<- *prometheus.Desc) {

ch <- up
}

// Implements prometheus.Collector.
func (c ConsulCollector) Collect(ch chan<- prometheus.Metric) {

consul, err := api.NewClient(api.DefaultConfig())
if err != nil {

ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 0)
return

}

metrics, err := consul.Agent().Metrics()
if err != nil {

ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 0)
return

}
ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 1)

for _, g := range metrics.Gauges {
name := invalidChars.ReplaceAllLiteralString(g.Name, "_")
desc := prometheus.NewDesc(name, "Consul metric "+g.Name, nil,
 g.Labels)
ch <- prometheus.MustNewConstMetric(

desc, prometheus.GaugeValue, float64(g.Value))

Consul Telemetry | 217

}

for _, c := range metrics.Counters {
name := invalidChars.ReplaceAllLiteralString(c.Name, "_")
desc := prometheus.NewDesc(name+"_total", "Consul metric "+c.Name,
 nil, c.Labels)
ch <- prometheus.MustNewConstMetric(

desc, prometheus.CounterValue, float64(c.Count))
}

for _, s := range metrics.Samples {
// All samples are times in milliseconds, we convert them to
// seconds below.
name := invalidChars.ReplaceAllLiteralString(s.Name, "_") +
 "_seconds"
countDesc := prometheus.NewDesc(

name+"_count", "Consul metric "+s.Name, nil, s.Labels)
ch <- prometheus.MustNewConstMetric(

countDesc, prometheus.CounterValue, float64(s.Count))
sumDesc := prometheus.NewDesc(

name+"_sum", "Consul metric "+s.Name, nil, s.Labels)
ch <- prometheus.MustNewConstMetric(

sumDesc, prometheus.CounterValue, s.Sum/1000)
}

}

func main() {
c := ConsulCollector{}
prometheus.MustRegister(c)
http.Handle("/metrics", promhttp.Handler())
log.Fatal(http.ListenAndServe(":8000", nil))

}

If you have a working Go development environment, you can run the exporter with:

go get -d -u github.com/hashicorp/consul/api
go get -d -u github.com/prometheus/client_golang/prometheus
go run consul_metrics.go

If you visit http://localhost:8000/metrics, you will see metrics like:

HELP consul_autopilot_failure_tolerance Consul metric
 consul.autopilot.failure_tolerance
TYPE consul_autopilot_failure_tolerance gauge
consul_autopilot_failure_tolerance 0
HELP consul_raft_apply_total Consul metric consul.raft.apply
TYPE consul_raft_apply_total counter
consul_raft_apply_total 1
HELP consul_fsm_coordinate_batch_update_seconds_count Consul metric
 consul.fsm.coordinate.batch-update
TYPE consul_fsm_coordinate_batch_update_seconds_count counter
consul_fsm_coordinate_batch_update_seconds_count 1
HELP consul_fsm_coordinate_batch_update_seconds_sum Consul metric

218 | Chapter 12: Writing Exporters

 consul.fsm.coordinate.batch-update
TYPE consul_fsm_coordinate_batch_update_seconds_sum counter
consul_fsm_coordinate_batch_update_seconds_sum 1.3156799972057343e-01

That’s all well and good, but how does the code work? In the next section we will
show you how.

Custom Collectors
With direct instrumentation the client library takes in instrumentation events and
tracks the values of the metrics over time. Client libraries provide the counter, gauge,
summary, and histogram metrics for this, which are all examples of collectors. At
scrape time each collector in a registry is collected, which is to say, asked for its
metrics. These metrics will then be returned by the scrape of /metrics. Counters and
the other three standard metric types only ever return one metric family.

If rather than using direct instrumentation you want to provide from some other
source, you use a custom collector, which is any collector that is not one of the
standard four. Custom collectors can return any number of metric families. Collec‐
tion happens on every single scrape of a /metrics page, where each collection is a
consistent snapshot of the metrics from a collector.

In Go your collectors must implement the prometheus.Collector interface. That is
to say the collectors must be objects with Describe and Collect methods with a
specific signature.

The Describe method returns a description of the metrics it will produce, in particu‐
lar the metric name, label names, and help string. The Describe method is called at
registration time, and is used to avoid duplicate metric registration.

There are two types of metrics an exporter can have: ones where it knows the names
and labels in advance, and ones where they are only determined at scrape time. In
this example, consul_up is known in advance so you can create its Desc once with
NewDesc and provide it via Describe. All the other metrics are generated dynamically
at scrape time, so cannot be included:

var (
 up = prometheus.NewDesc(
 "consul_up",
 "Was talking to Consul successful.",
 nil, nil,
)
)
// Implements prometheus.Collector.
func (c ConsulCollector) Describe(ch chan<- *prometheus.Desc) {
 ch <- up
}

Custom Collectors | 219

4 See “or operator” on page 271.

The Go client requires that at least one Desc is provided by
Describe. If all your metrics are dynamic, you can provide a
dummy Desc to work around this.

At the core of a custom collector is the Collect method. In this method you fetch
all the data you need from the application instance you are working with, munge
it as needed, and then send the metrics back to the client library. Here you need
to connect to Consul and then fetch its metrics. If an error occurs, consul_up is
returned as 0; otherwise, once we know that the collection is going to be successful,
it is returned as 1. Only returning a metric sometimes is difficult4 to deal with in
PromQL; having consul_up allows you to alert on issues talking to Consul so you’ll
know that something is awry.

To return consul_up, prometheus.MustNewConstMetric is used to provide a sample
for just this scrape. It takes its Desc, type, and value:

// Implements prometheus.Collector.
func (c ConsulCollector) Collect(ch chan<- prometheus.Metric) {
 consul, err := api.NewClient(api.DefaultConfig())
 if err != nil {
 ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 0)
 return
 }

 metrics, err := consul.Agent().Metrics()
 if err != nil {
 ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 0)
 return
 }
 ch <- prometheus.MustNewConstMetric(up, prometheus.GaugeValue, 1)

There are three possible values: GaugeValue, CounterValue, and UntypedValue.
Gauge and Counter you already know, and Untyped is for cases where you are
not sure whether a metric is a counter or a gauge. This is not possible with direct
instrumentation, but it is not unusual for the type of metrics from other monitoring
and instrumentation systems to be unclear and impractical to determine.

Now that you have the metrics from Consul, you can process the gauges. Invalid
characters in the metric name, such as dots and hyphens, are converted to under‐
scores. A Desc is created on the fly, and immediately used in a MustNewConstMetric:

 for _, g := range metrics.Gauges {
 name := invalidChars.ReplaceAllLiteralString(g.Name, "_")
 desc := prometheus.NewDesc(name, "Consul metric "+g.Name, nil, g.Labels)

220 | Chapter 12: Writing Exporters

 ch <- prometheus.MustNewConstMetric(
 desc, prometheus.GaugeValue, float64(g.Value))
 }

We pass g.Labels as the last parameter to prometheus.NewDesc. It
is a set of labels set by Consul, such as a datacenter label. We have
to pass them because some of the gauges have a cardinality greater
than one, and without those labels, the /metrics page would error
out.

Processing of counters is similar, except that a _total suffix is added to the metric
name:

 for _, c := range metrics.Counters {
 name := invalidChars.ReplaceAllLiteralString(c.Name, "_")
 desc := prometheus.NewDesc(name+"_total", "Consul metric "+c.Name, nil,
 c.Labels)
 ch <- prometheus.MustNewConstMetric(
 desc, prometheus.CounterValue, float64(s.Count))
 }

The contents of metrics.Samples are more complicated. While the samples are a
Prometheus summary, the Go client does not currently support those for MustNew
ConstMetric. Instead, you can emulate it using two counters. _seconds is appended
to the metric name, and the sum is divided by one thousand to convert from milli‐
seconds to seconds:

 for _, s := range metrics.Samples {
 // All samples are times in milliseconds, we convert them to seconds below.
 name := invalidChars.ReplaceAllLiteralString(s.Name, "_") + "_seconds"
 countDesc := prometheus.NewDesc(
 name+"_count", "Consul metric "+s.Name, nil, s.Labels)
 ch <- prometheus.MustNewConstMetric(
 countDesc, prometheus.CounterValue, float64(s.Count))
 sumDesc := prometheus.NewDesc(
 name+"_sum", "Consul metric "+s.Name, nil, s.Labels)
 ch <- prometheus.MustNewConstMetric(
 sumDesc, prometheus.CounterValue, s.Sum/1000)
 }

s.Sum here is a float64, but you must be careful when doing divi‐
sion with integers to ensure you don’t unnecessarily lose precision.
If sum were an integer, float64(sum)/1000 would convert to float‐
ing point first and then divide, which is what you want. On the
other hand, float64(sum/1000) will first divide the integer value
by one thousand, losing three digits of precision.

Custom Collectors | 221

Finally, the custom collector object is instantiated and registered with the default
registry, in the same way you would one of the direct instrumentation metrics:

 c := ConsulCollector{}
 prometheus.MustRegister(c)

Exposition is performed in the usual way, which you already saw in “Go” on page 71:

 http.Handle("/metrics", promhttp.Handler())
 log.Fatal(http.ListenAndServe(":8000", nil))

This is, of course, a simplified example. In reality you would have some way to
configure the Consul server to talk to, such as a command-line flag, rather than
depending on the client’s default. You would also reuse the client between scrapes,
and allow the various authentication options of the client to be specified.

The min, max, mean, and stddev were discarded from the original
output as they are not very useful. You can calculate a mean using
the sum and count. min, max, and stddev, on the other hand,
cannot be aggregated and you don’t know over what time period
they were measured.

As the default registry is being used, go_ and process_ metrics are included in
the result. These provide you with information about the performance of the
exporter itself, and are useful to detect issues such as file descriptor leaks using the
process_open_fds. This saves you from having to scrape the exporter separately for
these metrics.

The only time you might not use the default registry for an exporter is when writing a
Blackbox/SNMP-style exporter, where some interpretation of URL parameters needs
to be performed as collectors have no access to URL parameters for a scrape. In
that case, you would also scrape the /metrics of the exporter in order to monitor the
exporter itself.

For comparison, the equivalent exporter written using Python 3 is shown in Exam‐
ple 12-3. This is largely the same as the one written in Go; the only notable difference
is that a SummaryMetricFamily is available to represent a summary, instead of emulat‐
ing it with two separate counters. The Python client does not have as many sanity
checks as the Go client, so you need to be a little more careful with it.

Example 12-3. consul_metrics.py, an exporter for Consul metrics written in Python 3

import json
import re
import time
from urllib.request import urlopen

222 | Chapter 12: Writing Exporters

from prometheus_client.core import GaugeMetricFamily, CounterMetricFamily
from prometheus_client.core import SummaryMetricFamily, REGISTRY
from prometheus_client import start_http_server

def sanitize_name(s):
 return re.sub(r"[^a-zA-Z0-9:_]", "_", s)

class ConsulCollector(object):
 def collect(self):
 out = urlopen("http://localhost:8500/v1/agent/metrics").read()
 metrics = json.loads(out.decode("utf-8"))

 for g in metrics["Gauges"]:
 yield GaugeMetricFamily(sanitize_name(g["Name"]),
 "Consul metric " + g["Name"], g["Value"])

 for c in metrics["Counters"]:
 yield CounterMetricFamily(sanitize_name(c["Name"]) + "_total",
 "Consul metric " + c["Name"], c["Count"])

 for s in metrics["Samples"]:
 yield SummaryMetricFamily(sanitize_name(s["Name"]) + "_seconds",
 "Consul metric " + s["Name"],
 count_value=c["Count"], sum_value=s["Sum"] / 1000)

if __name__ == '__main__':
 REGISTRY.register(ConsulCollector())
 start_http_server(8000)
 while True:
 time.sleep(1)

Labels
In the preceding example you only saw metrics without labels. To provide labels you
need to specify the label names in Desc and then the values in MustNewConstMetric.

To expose a metric with the time series example_gauge{foo="bar", baz="small"}
and example_gauge{foo="quu", baz="far"}, you could do, with the Go Prome‐
theus client library:

func (c MyCollector) Collect(ch chan<- prometheus.Metric) {
 desc := prometheus.NewDesc(
 "example_gauge",
 "A help string.",
 []string{"foo", "baz"}, nil,
)
 ch <- prometheus.MustNewConstMetric(
 desc, prometheus.GaugeValue, 1, "bar", "small")
 ch <- prometheus.MustNewConstMetric(
 desc, prometheus.GaugeValue, 2, "quu", "far")
}

Custom Collectors | 223

First, you can provide each time series individually. The registry will take care of
combining all the time series belonging to the same metric family in the /metrics
output.

The help strings of all metrics with the same name must be identi‐
cal. Providing differing Descs will cause the scrape to fail.

The Python client works a little differently; you assemble the metric family and then
return it. While that may sound like more effort, it usually works out to be the same
level of effort in practice:

class MyCollector(object):
 def collect(self):
 mf = GaugeMetricFamily("example_gauge", "A help string.",
 labels=["foo", "baz"])
 mf.add_metric(["bar", "small"], 1)
 mf.add_metric(["quu", "far"], 2)
 yield mf

Guidelines
While direct instrumentation tends to be reasonably simple, writing exporters tends
to be murky and involve engineering trade-offs. Do you want to spend a lot of
ongoing effort to produce perfect metrics, or do something that’s good enough and
requires no maintenance? Writing exporters is more of an art than a science.

You should try to follow the metric naming practices, in particular, avoiding the
_count, _sum, _total, _bucket, and _info suffixes unless the time series is part of a
metric that is meant to contain such a time series.

It is often not possible or practical to determine whether a bunch of metrics are
gauges, counters, or a mix of the two. In cases where there is a mix you should mark
them as untyped rather than using gauge or counter, which would be incorrect. If a
metric is a counter, don’t forget to add the _total suffix.

Where practical you should try to provide units for your metrics, and at the very
least try to ensure that the units are in the metric name. Having to determine what
the units are from metrics, as in Example 12-1, is not fun for anyone, so you should
try to remove this burden from your exporter users. Seconds and bytes are always
preferred.

In terms of using labels in exporters, there are a few gotchas to look out for. As
with direct instrumentation, cardinality is also a concern for exporters for the same

224 | Chapter 12: Writing Exporters

5 And check that it is actually a ratio/percentage; it’s not unknown for metrics to confuse the two.
6 Or Windows Exporter for Windows users.
7 Unless writing a Blackbox/SNMP-style exporter, which is rare.
8 This can happen when your exporters are scraped by multiple servers.

reasons that were discussed in “Cardinality” on page 99. Metrics with high churn in
their labels should be avoided.

Labels should create a partition across a metric, and if you take a sum or average
across a metric it should be meaningful, as discussed in “When to Use Labels” on
page 98. In particular, you should look out for any time series that are just totals
of all the other values in a metric, and remove them. If you are ever unsure as to
whether a label makes sense when writing an exporter, then it is safest not to use
one, though keep in mind the discussion in “Table Exception” on page 99. As with
direct instrumentation, you should not apply a label such as env="prod" to all metrics
coming from your exporter, as that is what target labels are for, as discussed in
“Target Labels” on page 153.

It is best to expose raw metrics to Prometheus, rather than doing calculations on the
application side. For example, there is no need to expose a 5-minute rate when you
have a counter, as you can use the rate function to calculate a rate over any period
you like. Similarly with ratios, drop them in favor of the numerator and denominator.
If you have a percentage without its constituent numerator and denominator, at the
least convert it to a ratio.5

Beyond multiplication and division to standardize units, you should avoid math in
exporters, as processing raw data in PromQL is preferred. Race conditions between
metrics instrumentation events can lead to artifacts, particularly when you subtract
one metric from another. Addition of metrics for the purposes of reducing cardinality
can be OK, but if they’re counters, make sure there will not be spurious resets due to
some of them disappearing.

Some metrics are not particularly useful given how Prometheus is intended to be
used. Many applications expose metrics such as machine RAM, CPU, and disk. You
should not expose machine-level metrics in your exporter, as that is the responsibility
of the Node Exporter.6 Minimums, maximums, and standard deviations cannot be
sanely aggregated so should also be dropped.

You should plan on running one exporter per application instance,7 and fetch metrics
synchronously for each scrape without any caching. This keeps the responsibilities of
service discovery and scrape scheduling with Prometheus. Note that you should be
aware that concurrent scrapes can happen.8

Guidelines | 225

Just as Prometheus adds a scrape_duration_seconds metric when performing a
scrape, you may also add a myexporter_scrape_duration_seconds metric for how
long it takes your exporter to pull the data from its application. This helps in perfor‐
mance debugging, as you can see if it’s the application or your exporter that is getting
slow. Additional metrics such as the number of metrics processed can also be helpful.

It can make sense for you to add direct instrumentation to exporters, in addition
to the custom collectors that provide their core functionality. For example, the Cloud‐
Watch Exporter has a cloudwatch_requests_total counter tracking the number of
API calls it makes, as each API call costs money. But this is usually only something
that you will see with Blackbox/SNMP-style exporters.

Now that you know how to get metrics out of both your applications and third-party
code, in the next chapter we will start covering PromQL, which allows you to work
with these metrics.

226 | Chapter 12: Writing Exporters

PART IV

PromQL

The Prometheus Query Language offers you the ability to do all sorts of aggregations,
analysis, and arithmetic, allowing you to better understand the performance of your
systems from your metrics.

In this part you will be reusing the Prometheus and Node Exporter setup you created
in Chapter 2, and using the expression browser to execute queries.

Chapter 13 covers the basics of PromQL, and how you can use the HTTP API to
evaluate expressions.

Chapter 14 looks in depth into how aggregation works.

Chapter 15 covers operators such as addition and comparisons, and how you can join
different metrics.

Chapter 16 goes into the wide variety of functions that PromQL offers you, from
knowing the time of day to predicting when your hard disk will fill up.

Chapter 17 covers the recording rule feature of Prometheus, which allows you to
precompute metrics for faster and more sophisticated querying with PromQL.

1 Brian has demonstrated PromQL to be Turing Complete in two different ways. Don’t try this in production.

CHAPTER 13

Introduction to PromQL

PromQL is the Prometheus Query Language. While it ends in QL, you will find that it
is not an SQL-like language, as SQL languages tend to lack expressive power when it
comes to the sort of calculations you would like to perform on time series.

Labels are a key part of PromQL, and you can use them not only to do arbitrary
aggregations but also to join different metrics together for arithmetic operations
against them. There are a wide variety of functions available to you from prediction
to date and math functions.

This chapter will introduce you to the basic concepts of PromQL, including aggrega‐
tion, basic types, and the HTTP API.

Aggregation Basics
Let’s get started with some simple aggregation queries. These queries will likely cover
most of your potential uses for PromQL. While PromQL is as powerful as it is
possible to be,1 most of the time your needs will be reasonably simple.

Gauge
Gauges are a snapshot of state, and usually when aggregating them you want to take a
sum, average, minimum, or maximum.

Consider the metric node_filesystem_size_bytes from your Node Exporter, which
reports the size of each of your mounted filesystems, and has device, fstype, and
mountpoint labels. You can calculate total filesystem size on each machine with:

229

https://oreil.ly/TQWlz
https://oreil.ly/kikcz

sum without(device, fstype, mountpoint)(node_filesystem_size_bytes)

This works as without tells the sum aggregator to sum everything up with the same
labels, ignoring those three. So if you had the time series:

node_filesystem_free_bytes{device="/dev/sda1",fstype="vfat",
 instance="localhost:9100",job="node",mountpoint="/boot/efi"} 70300672
node_filesystem_free_bytes{device="/dev/sda5",fstype="ext4",
 instance="localhost:9100",job="node",mountpoint="/"} 30791843840
node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run"} 817094656
node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/lock"} 5238784
node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/1000"} 826912768

the result would be:

{instance="localhost:9100",job="node"} 32511390720

You will notice that the device, fstype, and mountpoint labels are now gone.
The metric name is also no longer present, as this is no longer node_filesys
tem_free_bytes because math has been performed on it. Since there is only one
Node Exporter being scraped by Prometheus, there is only one result, but if you were
scraping more, then you would have a result for each of the Node Exporters.

You could go a step further and remove the instance label with:

sum without(device, fstype, mountpoint, instance)(node_filesystem_size_bytes)

This as expected removes the instance label, but the value remains the same as the
previous expression because there is only one Node Exporter to aggregate metrics
from:

{job="node"} 32511390720

You can use the same approach with other aggregations. max would tell you the size of
the biggest mounted filesystem on each machine:

max without(device, fstype, mountpoint)(node_filesystem_size_bytes)

The outputted labels are exactly the same as when you aggregated using sum:

{instance="localhost:9100",job="node"} 30792601600

This predictability in what labels are returned is important for vector matching with
operators, as will be discussed in Chapter 15.

You are not limited to aggregating metrics about one type of job. For example, to find
the average number of file descriptors open across all your jobs, you could use:

avg without(instance, job)(process_open_fds)

230 | Chapter 13: Introduction to PromQL

Counter
Counters track the number or size of events, and the value your applications expose
on their /metrics is the total since it started. But that total is of little use to you on
its own; what you really want to know is how quickly the counter is increasing over
time. This is usually done using the rate function, though the increase and irate
functions also operate on counter values.

For example, to calculate the amount of network traffic received per second, you
could use:

rate(node_network_receive_bytes_total[5m])

The [5m] says to provide rate with 5 minutes of data, so the returned value will be an
average over the last 5 minutes:

{device="lo",instance="localhost:9100",job="node"} 1859.389655172414
{device="wlan0",instance="localhost:9100",job="node"} 1314.5034482758622

The values here are not integers, as the 5-minute window rate is looking at does
not perfectly align with the samples that Prometheus has scraped. Some estimation is
used to fill in the gaps between the data points you have and the boundaries of the
range.

The output of rate is a gauge, so the same aggregations apply as for gauges. The
node_network_receive_bytes_total metric has a device label, so if you aggregate it
away you will get the total bytes received per machine per second:

sum without(device)(rate(node_network_receive_bytes_total[5m]))

Running this query will give you a result like:

{instance="localhost:9100",job="node"} 3173.8931034482762

You can filter down which time series to request, so you could only look at eth0 and
then aggregate it across all machines by aggregating away the instance label:

sum without(instance)(rate(node_network_receive_bytes_total{device="eth0"}[5m]))

When you run this query the instance label is gone, but the device label remains as
you did not ask for it to be removed:

{device="eth0",job="node"} 3173.8931034482762

There is no ordering or hierarchy within labels, allowing you to aggregate by as many
or as few labels as you like.

Aggregation Basics | 231

2 In Prometheus 2.3.0 this was renamed to prometheus_http_response_size_bytes_count.

Summary
A summary metric will usually contain both a _sum and _count, and sometimes
a time series with no suffix with a quantile label. The _sum and _count are both
counters.

Your Prometheus exposes an http_response_size_bytes summary for the amount
of data some of its HTTP APIs return.2 http_response_size_bytes_count tracks the
number of requests, and as it is a counter, you must use rate before aggregating away
its handler label:

sum without(handler)(rate(http_response_size_bytes_count[5m]))

This gives you the total per-second HTTP request rate, and as the Node Exporter also
returns this metric, you will see both jobs in the result:

{instance="localhost:9090",job="prometheus"} 0.26868836781609196
{instance="localhost:9100",job="node"} 0.1

Similarly, http_response_size_bytes_sum is a counter with the number of bytes
each handle has returned, so the same pattern applies:

sum without(handler)(rate(http_response_size_bytes_sum[5m]))

This will return results with the same labels as the previous query, but the values are
larger as responses tend to return many bytes:

{instance="localhost:9090",job="prometheus"} 796.0015958275862
{instance="localhost:9100",job="node"} 1581.6103448275862

The power of a summary is that it allows you to calculate the average size of an event,
in this case the average amount of bytes that are being returned in each response.
If you had three responses of size 1, 4, and 7, then the average would be their sum
divided by their count, which is to say 12 divided by 3. The same applies to the
summary. You divide the _sum by the _count (after taking a rate) to get an average
over a time period:

 sum without(handler)(rate(http_response_size_bytes_sum[5m]))
/
 sum without(handler)(rate(http_response_size_bytes_count[5m]))

The division operator matches the time series with the same labels, and divides,
giving you the same two time series out but with the average response size over the
past 5 minutes as a value:

{instance="localhost:9090",job="prometheus"} 2962.54580091246150133317
{instance="localhost:9100",job="node"} 15816.10344827586200000000

232 | Chapter 13: Introduction to PromQL

3 This can of course be more simply calculated as sum without(instance, handler)(…), but with the record‐
ing rules covered in Chapter 17, such an expression could end up split into several expressions.

When calculating an average, it is important that you first aggregate up the sum and
count, and only as the last step perform the division. Otherwise, you could end up
averaging averages, which is not statistically valid.

For example, if you wanted to get the average response size across all instances of a
job, you could do:3

 sum without(instance)(
 sum without(handler)(rate(http_response_size_bytes_sum[5m]))
)
/
 sum without(instance)(
 sum without(handler)(rate(http_response_size_bytes_count[5m]))
)

However, it’d be incorrect to do:

avg without(instance)(
 sum without(handler)(rate(http_response_size_bytes_sum[5m]))
 /
 sum without(handler)(rate(http_response_size_bytes_count[5m]))
)

It is incorrect to average an average, and both the division and avg would be calculat‐
ing averages.

It is not possible for you to aggregate the quantiles of a summary
(the time series with the quantile label) from a statistical stand‐
point.

Histogram
Histogram metrics allow you to track the distribution of the size of events, allowing
you to calculate quantiles from them. For example, you can use histograms to calcu‐
late the 0.9 quantile (which is also known as the 90th percentile) latency.

Prometheus 2.37.1 exposes a histogram metric called prometheus_tsdb_compac
tion_duration_seconds that tracks how many seconds compaction takes for the
time series database. This histogram metric has time series with a _bucket suffix
called prometheus_tsdb_compaction_duration_seconds_bucket. Each bucket has a
le label, which is a counter of how many events have a size less than or equal to the
bucket boundary. This is an implementation detail you largely need not worry about

Aggregation Basics | 233

4 The day-long range is only being used here due to the limited number of histograms that Prometheus and the
Node Exporter offer for us to use as examples.

as the histogram_quantile function takes care of this when calculating quantiles. For
example, the 0.90 quantile would be:

histogram_quantile(
 0.90,
 rate(prometheus_tsdb_compaction_duration_seconds_bucket[1d]))

As prometheus_tsdb_compaction_duration_seconds_bucket is a counter, you must
first take a rate. Compaction usually only happens every two hours, so a one-day
time range is used here and you will see a result in the expression browser such as:

{instance="localhost:9090",job="prometheus"} 7.720000000000001

This indicates that the 90th percentile latency of compactions is around 7.72 seconds.
As there will usually only be 12 compactions in a day, the 90th percentile says that
10% of compactions take longer than this, which is to say one or two compactions.
This is something to be aware of when using quantiles. For example, if you want to
calculate a 0.999 quantile, you should have several thousand data points to work with
in order to produce a reasonably accurate answer. If you have fewer than that, single
outliers could greatly affect the result, and you should consider using lower quantiles
to avoid making statements about your system for which you have insufficient data to
back up.

Usually you would use a 5- or 10-minute rate with histograms.
All the bucket time series combined with any labels, and a long
range on the rate, can make for a lot of samples that need to be
processed. Be wary of PromQL expressions using ranges that are
hours or days, as they can be relatively expensive to calculate.4

Similar to when taking averages, using histogram_quantile should be the last step
in a query expression. Quantiles cannot be aggregated, or have arithmetic performed
upon them, from a statistical standpoint. Accordingly, when you want to take a histo‐
gram of an aggregate, first aggregate up with sum and then use histogram_quantile:

histogram_quantile(
 0.90,
 sum without(instance)(rate(prometheus_tsdb_compaction_duration_bucket[1d])))

This calculates the 0.9 quantile compaction duration across all of your Prometheus
servers, and will produce a result without an instance label:

{job="prometheus"} 7.720000000000001

234 | Chapter 13: Introduction to PromQL

5 Such as process_cpu_seconds_total, which most exporters and client libraries will expose.

Histogram metrics also include _sum and _count metrics, which work exactly the
same as for the summary metric. You can use these to calculate average event sizes,
such as the average compaction duration:

 sum without(instance)(rate(prometheus_tsdb_compaction_duration_sum[1d]))
/
 sum without(instance)(rate(prometheus_tsdb_compaction_duration_count[1d]))

This would produce a result like:

{job="prometheus"} 3.1766430400714287

Selectors
Working with all the different time series with different label values for a metric can
be a bit overwhelming, and potentially confusing if a metric is coming from multiple
different types of servers.5 Usually you will want to narrow down which time series
you are working on. You almost always will want to limit by job label, and depending
on what you are up to, you might want to only look at one instance or one handler,
for example.

This limiting by labels is done using selectors. You have seen selectors in every
example thus far, and now we are going to explain them to you in detail. For example:

process_resident_memory_bytes{job="node"}

is a selector that will return all time series with the name process_resident_
memory_bytes and a job label of node. This particular selector is most properly called
an instant vector selector, as it returns the values of the given time series at a given
instant. Vector here basically means a one-dimensional list, as a selector can return
zero or more time series, and each time series will have one sample.

The job="node" is called a matcher, and you can have many matchers in one selector
that are ANDed together.

Matchers
There are four matchers (you have already seen the equality matcher, which is also the
most commonly used):

Selectors | 235

6 It works this way to avoid accidentally overmatching. This way you usually get immediate feedback if your
regular expression is under matching, while an unanchored expression might cause subtle issues down the
line.

7 The Node Exporter has a --collector.filesystem.ignored-mount-points flag you could use if you didn’t
want these filesystems exported in the first place.

=

This is the equality matcher; for example, job="node". With this you can specify
that the returned time series has a label name with exactly the given label value.
As an empty label, value is the same as not having that label, so you could use
foo="" to specify that the foo label not be present.

!=

This is the negative equality matcher; for example, job!="node". With this you
can specify that the returned time series do not have a label name with exactly
the given label value.

=~

This is the regular expression matcher; for example, job=~"n.*". With this you
specify that for the returned time series, the given label’s value will be matched
by the regular expression. The regular expression is fully anchored, which is to
say that the regular expression a will only match the string a, and not xa or ax.
You can prepend or suffix your regular expression with .* if you do not want
this behavior.6 As with relabeling, the RE2 regular expression engine is used, as
covered in “Regular Expressions” on page 152.

!~

This is the negative regular expression matcher. RE2 does not support negative
lookahead expressions, so this provides you with an alternative way to exclude
label values based on a regular expression.

You can have multiple matchers with the same label name in a selector, which can be
a substitute for negative lookahead expressions. For example, to find the size of all
filesystems mounted under /run but not /run/user, you could use:7

node_filesystem_size_bytes{job="node",mountpoint=~"/run/.*",
 mountpoint!~"/run/user/.*"}

Internally, the metric name is stored in a label called __name__ (as discussed
in “Reserved Labels and __name__” on page 90), so process_resident_

memory_bytes{job="node"} is syntactic sugar for {name="process_resident_

memory_bytes",job="node"}. You can even do regular expressions on the metric
name, but this is unwise outside of when you are debugging the performance of the
Prometheus server.

236 | Chapter 13: Introduction to PromQL

8 If you do want to return all time series, you can use {__name__=~".+"}, but beware of the expense of this
expression.

9 You can extract the samples’ timestamps using the timestamp function.
10 Internally, stale markers are a special type of NaN value. They are an implementation detail, and you cannot

access them directly via any of the query APIs that use PromQL. But you could see them if you looked at the
Prometheus server’s storage directly, such as via Prometheus’s remote read endpoint.

Having to use regular expression matchers is a little bit of a smell.
If you find yourself using them a lot on a given label, consider if
you should instead combine the matched label values into one. For
example, for HTTP status codes instead of doing code~="4.." to
catch 401s, 404s, 405s, etc., you might combine them into a label
value 4xx and use the equality matcher code="4xx".

The selector {} returns an error, which is a safety measure to avoid accidentally
returning all the time series inside the Prometheus server as that could be expen‐
sive. To be more precise, at least one of the matchers in a selector must not
match the empty string. So {foo=""} and {foo=~".*"} will return an error, while
{foo="",bar="x"}, {foo!=""}, or {foo=~".+"} are permitted.8

Instant Vector
An instant vector selector returns an instant vector of the most recent samples
before the query evaluation time, which is to say a list of zero or more time series.
Each of these time series will have one sample, and a sample contains both a value
and a timestamp. While the instant vector returned by an instant vector selector has
the timestamp of the original data,9 any instant vectors returned by other operations
or functions will have the timestamp of the query evaluation time for all of their
values.

When you ask for current memory usage, you do not want samples from an instance
that was turned down days ago to be included, a concept known as staleness. In
Prometheus 1.x this was handled by returning time series that had a sample no
more than 5 minutes before the query evaluation time. This largely worked but had
downsides such as double counting if an instance restarted with a new instance label
within that 5-minute window.

Prometheus 2.x has a more sophisticated approach. If a time series disappears from
one scrape to the next, or if a target is no longer returned from service discovery, a
special type of sample called a stale marker10 is appended to the time series. When
evaluating an instant vector selector, all time series satisfying all the matchers are first
found, and the most recent sample in the 5 minutes before the query evaluation time
is still considered. If the sample is a normal sample, then it is returned in the instant

Selectors | 237

11 You may also see it referred to as a matrix in places, as it is a two-dimensional data structure.
12 This is a very lightly loaded Prometheus, so there is no jitter.

vector, but if it is a stale marker, then that time series will not be included in that
instant vector.

The outcome of all of this is that when you use an instant vector selector, time series
that have gone stale are not returned.

If you have an exporter exposing timestamps, as described in
“Timestamps” on page 82, then stale markers and the Prometheus
2.x staleness logic will not apply. The affected time series will work
instead with the older logic that looks back 5 minutes.

Range Vector
There is a second type of selector you have already seen, called the range vector
selector. Unlike an instant vector selector, which returns one sample per time series,
a range vector selector can return many samples for each time series.11 Range vectors
are always used with the rate function, for example:

rate(process_cpu_seconds_total[1m])

The [1m] turns the instant vector selector into a range vector selector, and instructs
PromQL to return for all time series matching the selector all samples for the
minute up to the query evaluation time. If you execute just process_cpu_seconds_
total[1m] in the Console tab of the expression browser, you will see something like
Figure 13-1.

In this case, each time series happens to have six samples in the past minute. You will
notice that while the samples for each time series happen to be perfectly 10 seconds
apart12 in line with the scrape interval you configured, the two time series timestamps
are not aligned with each other. One time series has a sample with a timestamp of
1517925155.087 and the other 1517925156.245.

238 | Chapter 13: Introduction to PromQL

Figure 13-1. A range vector in the Console tab of the expression browser

This is because range vectors preserve the actual timestamps of the samples, and
the scrapes for different targets are distributed in order to spread load more evenly.
While you can control the frequency of scrapes and rule evaluations, you cannot con‐
trol their phase or alignment. If you have a 10-second scrape interval and hundreds of
targets, then all those targets will be scraped at different points in a given 10-second
window. Put another way, your time series all have slightly different ages. This
generally won’t matter to you in practice, but can lead to artifacts as fundamentally
metrics-based monitoring systems like Prometheus produce (quite good) estimates
rather than exact answers.

You will very rarely look at range vectors directly. It only comes up when you need
to see raw samples when debugging. Almost always you will use a range vector with a
function such as rate or avg_over_time that takes a range vector as an argument.

Staleness and stale markers have no impact on range vectors; you will get all the
normal samples in a given range. Any stale markers also in that range are not
returned by a range vector selector.

Selectors | 239

Durations
Durations in Prometheus as used in PromQL and the configuration file support
several units. You have already seen m for minute.

Suffix Meaning

ms Milliseconds

s Seconds, which have 1,000 milliseconds

m Minutes, which have 60 seconds

h Hours, which have 60 minutes

d Days, which have 24 hours

w Weeks, which have 7 days

y Years, which have 365 days

You can combine multiple units with integers, as long as they are ordered, so 90m is
valid, 1h30m and 1.5h are also valid, but 30m1h is not valid.

Leap years and leap seconds are ignored; 1y is always 60*60*24*365 seconds.

Subqueries
While range vectors act on time series, they cannot be used in combination with
functions.

If you want to combine max_over_time with rate, you can either use recording rules,
which would record the result of the rate function and pass it to the vector function,
or you can use a subquery.

A subquery is a part of a query that allows you to do a range query within a query.
The syntax for a subquery uses square brackets, like range selectors. But it takes two
different durations: the range and the resolution.

The range is the range returned by the subquery, and the resolution acts as a step:

max_over_time(rate(http_requests_total[5m])[30m:1m])

The preceding query runs rate(http_requests_total[5m]) every minute (1m) for
the last 30 minutes (30m), then feeds the result in a max_over_time() function.

The resolution can be omitted, such as in [30m:]. In this case, the global evaluation
interval is used as resolution.

240 | Chapter 13: Introduction to PromQL

13 This is susceptible to outliers as it is using only two data points; the deriv function discussed in “deriv” on
page 293 is more robust.

Offset
There is a modifier you can use with either type of vector selector called offset.
offset allows you to take the evaluation time for a query, and on a per-selector basis
put it further back in time. For example:

process_resident_memory_bytes{job="node"} offset 1h

would get memory usage an hour before the query evaluation time.

offset is not used much in simple queries like this, as it would be easier to change
the evaluation time for the whole query instead. Where this can be useful is when you
only want to adjust one selector in a query expression. For example:

 process_resident_memory_bytes{job="node"}
-
 process_resident_memory_bytes{job="node"} offset 1h

would give the change in memory usage in the Node Exporter over the past hour.13

The same approach works with range vectors:

 rate(process_cpu_seconds_total{job="node"}[5m])
-
 rate(process_cpu_seconds_total{job="node"}[5m] offset 1h)

offset allows you to look further back into the past, but also in the future, using a
negative offset. This can be used when doing prediction or when the sample of the
metrics is unaligned with the reality:

 rate(process_cpu_seconds_total{job="node"}[5m]) offset -1h
-
 rate(process_cpu_seconds_total{job="node"}[5m])

Note that this query will likely not return anything for the last hour.

Grafana has a feature to shift in time a panel to a different time
range than the rest of the dashboard it is a part of. In Grafana 5.0.0
you can find this in the Time range tab of the panel editor.

Selectors | 241

14 We have pretty printed these JSON results for readability.

At Modifier
Similar to the offset modifier, PromQL supports an @ modifier that lets you
change the evaluation of vector selectors, range selectors, and subqueries to a fixed
revaluation time.

The @ modifier can be used with a Unix timestamp. The query
http_requests_total @ 1667491200 returns the value of http_requests_total
at 2022-11-03T16:00:00+00:00. The query rate(http_requests_total[5m] @

1667491200) returns the 5-minute rate of http_requests_total at the same time.

Additionally, start() and end() can be used as values for the @ modifier. For a range
query, they resolve respectively with the start and the end of the range query. For an
instant query, they both resolve to the evaluation time.

In practice, it is possible to use the @ modifier to graph the evolution of the
http_request_total that has a high rate at the end of the evaluation interval:

 rate(http_requests_total[1m])
 and
 topk(5, rate(http_requests_total[1h] @ end()))

The topk(5, rate(http_requests_total[1h] @ end())) acts as a ranking func‐
tion, filtering only the higher values at the end of the evaluation interval.

HTTP API
Prometheus offers a number of HTTP APIs. The ones you will mostly interact with
are query and query_range, which give you access to PromQL and can be used by
dashboarding tools or custom reporting scripts.

All the endpoints of interest are under /api/v1/, and beyond executing PromQL you
can also look up time series metadata and perform administrative actions, such as
taking snapshots and deleting time series. These other APIs are mainly of interest to
dashboarding tools such as Grafana, which can use metadata to enhance its UI, and
to those administering Prometheus, but are not relevant to PromQL execution.

query
The query endpoint, or more formally /api/v1/query, executes a PromQL expression
at a given time and returns the result. For example, http://localhost:9090/api/v1/query?
query=process_resident_memory_bytes will return results like:14

242 | Chapter 13: Introduction to PromQL

15 Unless your Prometheus has been running since then, this will produce an empty result.

{
 "status": "success",
 "data": {
 "resultType": "vector",
 "result": [
 {
 "metric": {
 "__name__": "process_resident_memory_bytes",
 "instance": "localhost:9090",
 "job": "prometheus"
 },
 "value": [1517929228.782, "91656192"]
 },
 {
 "metric": {
 "__name__": "process_resident_memory_bytes",
 "instance": "localhost:9100",
 "job": "node"
 },
 "value": [1517929228.782, "15507456"]
 }
]
 }
}

The status is success, meaning that the query worked. If it had failed, the status
would be error, and an error field would provide more details.

This particular result is an instant vector, which you can tell from "resultType":
"vector". For each of the samples in the result, the labels are in the metric map,
and the sample value is in the value list. The first number in the value list is the
timestamp of the sample, in seconds, and the second is the actual value of the sample.
The value is inside a string, as JSON cannot represent nonreal values such as NaN and
+Inf.

The time of all the samples will be the query evaluation time, even if the
expression consisted of only an instant vector selector. Here the query evalua‐
tion time defaulted to the current time, but you can specify a time with the
time URL parameter, which can be a Unix time, in seconds, or an RFC 3339
time. For example, http://localhost:9090/api/v1/query?query=process_resident_mem‐
ory_bytes&time=1514764800 would evaluate the query at midnight of January 1st,
2018.15

HTTP API | 243

16 Excluding stale markers.

17 This is different from {}, which is the identity of a time series with no labels.

You can also use range vectors with the query endpoint. For example, http://local‐
host:9090/api/v1/query?query=prometheus_tsdb_head_samples_appended_total[1m]
will return results like:

{
 "status": "success",
 "data": {
 "resultType": "matrix",
 "result": [
 {
 "metric": {
 "__name__": "process_resident_memory_bytes",
 "instance": "localhost:9090",
 "job": "prometheus"
 },
 "values": [
 [1518008453.662, "87318528"],
 [1518008463.662, "87318528"],
 [1518008473.662, "87318528"]
]
 },
 {
 "metric": {
 "__name__": "process_resident_memory_bytes",
 "instance": "localhost:9100",
 "job": "node"
 },
 "values": [
 [1518008444.819, "17043456"],
 [1518008454.819, "17043456"],
 [1518008464.819, "17043456"]
]
 }
]
 }
}

This is different than the previous instant vector result, as resultType is now matrix,
and each time series has multiple values. When used with a range vector, the query
endpoint returns the raw samples,16 but be wary of asking for too much data at once
because one end or the other may run out of memory.

There is one other type of result called a scalar. Scalars don’t have labels, they are just
numbers.17 http://localhost:9090/api/v1/query?query=42 would produce:

244 | Chapter 13: Introduction to PromQL

18 A scalar result is converted into an instant vector with a single time series with no labels with the same value,
as if the vector function was used. Range vector results are not supported.

{
 "status": "success",
 "data": {
 "resultType": "scalar",
 "result": [1518008879.023, "42"]
 }
}

query_range
The query range endpoint at /api/v1/query_range is the main HTTP endpoint of
Prometheus you will use, as it is the endpoint to use for graphing. Under the covers,
query_range is syntactic sugar (plus some performance optimizations) for multiple
calls to the query endpoint.

In addition to a query URL parameter, you provide query_range with a start time,
an end time, and a step. The query is first executed at the start time. Then it is
executed step seconds after the start time. Then it is executed twice step seconds
after the start time and so on, stopping when the query evaluation time would
exceed the end time. All the instant vector18 results from the different executions are
combined into a range vector and returned.

For example, if you wanted to query the number of samples Prometheus ingested in
the first 15 minutes of 2018, you could run the following: http://localhost:9090/api/v1/
query_range?query=rate(prometheus_tsdb_head_samples_appended_total[5m])&start
=1514764800&end=1514765700&step=60, which would produce a result like:

{
 "status": "success",
 "data": {
 "resultType": "matrix",
 "result": [
 {
 "metric": {
 "instance": "localhost:9090",
 "job": "prometheus"
 },
 "values": [
 [1514764800, "85.07241379310345"],
 [1514764860, "102.6793103448276"],
 [1514764920, "120.30344827586208"],
 [1514764980, "137.93103448275863"],
 [1514765040, "146.7586206896552"],
 [1514765100, "146.7793103448276"],
 [1514765160, "146.8"],

HTTP API | 245

 [1514765220, "146.8"],
 [1514765280, "146.8"],
 [1514765340, "146.8"],
 [1514765400, "146.8"],
 [1514765460, "146.8"],
 [1514765520, "146.8"],
 [1514765580, "146.8"],
 [1514765640, "146.8"],
 [1514765700, "146.8"],
]
 }
]
 }
}

There are a few aspects of this that you should take note of. The first is that the
sample timestamps align with the start time and step, as each result comes from
a different instant query evaluation and instant query results always use their evalua‐
tion time as the timestamp of results.

The second is that the last sample here is at the end time, which is to say that the
range is inclusive and the last point will be the end time if it happens to line up with
the step.

The third is that we selected a range of 5 minutes for the rate function, which is
larger than the step. Since query_range is doing repeated instant query evaluations,
there is no state being passed between the evaluations. If the range was smaller than
the step, then we would have been skipping over data. For example, a 1-minute range
with a 5-minute step would have ignored 80% of the samples. To prevent this you
should use ranges that are at least one or two scrape intervals larger than the step you
are using.

When using range vectors with query_range, you should usually
use a range that is longer than your step in order to not skip data.

The fourth is that some of the samples are not particularly round, and that any
numbers are round at all is due to this being a simple setup of the sample values.
When working with metrics your data is rarely perfectly clean; different targets are
scraped at different times and scrapes can be delayed. When performing queries that
are not perfectly aligned with the underlying data or aggregating across multiple
hosts, you will rarely get round results. In addition, the nature of floating-point
calculations can lead to numbers that are almost round.

246 | Chapter 13: Introduction to PromQL

19 // performs integer division in Python.

Here, there is a sample for each step. If it happened that there was no result for a
given time series for a step, then that sample would simply be missing in the end
result.

If there are more than 11,000 steps for a query_range, Prometheus
will reject the query with an error. This is to prevent accidentally
sending extremely large queries to Prometheus, such as a 1-second
step for a week. As monitors with a horizontal resolution of over
11,000 pixels are rare, you are unlikely to run into this when
graphing.
If you are writing reporting scripts, you can split up query_range
requests that would hit this limit. This limit allows for a minute
resolution for a week, or an hour of resolution for a year, so most of
the time it should not apply.

Aligned data

When using tools like Grafana it’s common for the alignment of query_range to be
based on the current time, and so your results will not align perfectly with minutes,
hours, or days. While this is fine when you are looking at dashboards, it is rarely what
you want with reporting scripts.

query_range does not have an option to specify alignment, instead it is up to you
to specify a start parameter with the right alignment. For example, if you wanted
to have samples every hour on the hour in Python, the expression (time.time() //
3600) * 3600 will return the start of the current hour,19 which you can adjust in
steps of 3,600 and use as the start and end URL parameters, and then use a step
parameter of 3600.

Now that you know the basics of how to use PromQL and execute queries via the
HTTP APIs, we will go into more detail on aggregation.

HTTP API | 247

CHAPTER 14

Aggregation Operators

You already learned about aggregation in “Aggregation Basics” on page 229; however,
this is only a small taste of what is possible. Aggregation is important. With applica‐
tions with thousands or even just tens of instances it’s not practical for you to sift
through each instance’s metrics individually. Aggregation allows you to summarize
metrics not just within one application, but across applications too.

There are 12 aggregation operators in PromQL, with 2 optional clauses, without and
by. In this chapter you’ll learn about the different ways you can use aggregation.

Grouping
Before talking about the aggregation operators themselves, you need to know about
how time series are grouped. Aggregation operators work only on instant vectors,
and they also output instant vectors.

Let’s say you have the following time series in Prometheus:

node_filesystem_size_bytes{device="/dev/sda1",fstype="vfat",
 instance="localhost:9100",job="node",mountpoint="/boot/efi"} 100663296
node_filesystem_size_bytes{device="/dev/sda5",fstype="ext4",
 instance="localhost:9100",job="node",mountpoint="/"} 90131324928
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run"} 826961920
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/lock"} 5242880
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/1000"} 826961920
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/119"} 826961920

There are three instrumentation labels: device, fstype, and mountpoint. There are
also two target labels: job and instance. Target and instrumentation labels are a

249

notion that you and we have, but which PromQL knows nothing about. All labels are
the same when it comes to PromQL, no matter where they originated from.

without
Generally you will always know the instrumentation labels, as they rarely change.
But you do not always know the target labels in play, as an expression you write
might be used by someone else on metrics originating from different scrape configs,
or Prometheus servers that might also have added in other target labels across a job,
such as an env or cluster label. You might even add in such target labels yourself at
some point, and it’d be nice not to have to update all your expressions.

When aggregating metrics you should usually try to preserve such target labels, and
thus you should use the without clause when aggregating to specify the labels you
want to remove. For example, the query:

sum without(fstype, mountpoint)(node_filesystem_size_bytes)

will group the time series, ignoring the fstype and mountpoint labels, into three
groups:

Group {device="/dev/sda1",instance="localhost:9100",job="node"}
node_filesystem_size_bytes{device="/dev/sda1",fstype="vfat",
 instance="localhost:9100",job="node",mountpoint="/boot/efi"} 100663296

Group {device="/dev/sda5",instance="localhost:9100",job="node"}
node_filesystem_size_bytes{device="/dev/sda5",fstype="ext4",
 instance="localhost:9100",job="node",mountpoint="/"} 90131324928

Group {device="tmpfs",instance="localhost:9100",job="node"}
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run"} 826961920
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/lock"} 5242880
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/1000"} 826961920
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/119"} 826961920

and the sum aggregator will apply within each of these groups, adding up the values of
the time series and returning one sample per group:

{device="/dev/sda1",instance="localhost:9100",job="node"} 100663296
{device="/dev/sda5",instance="localhost:9100",job="node"} 90131324928
{device="tmpfs",instance="localhost:9100",job="node"} 2486128640

Notice that the instance and job labels are preserved, as would be any other labels
that had been present. This is useful because any alerts you created that included
this expression somehow would have additional target labels like env or cluster

250 | Chapter 14: Aggregation Operators

1 This is potentially an expensive query as it touches every active time series; use it carefully.

preserved. This provides context for your alerts and makes them more useful (also
useful when graphing).

The metric name has also been removed, as this is an aggregation of the node_file
system_size_bytes metric rather than the original metric. When a PromQL opera‐
tor or function could change the value or meaning of a time series, the metric name is
removed.

It is valid to provide no labels to the without. For example:

sum without()(node_filesystem_size_bytes)

will give you the same result as:

node_filesystem_size_bytes

with the only difference being the metric name is removed.

by
In addition to without there is also the by clause. Where without specifies the labels
to remove, by specifies the labels to keep. Accordingly, some care is required when
using by to ensure you don’t remove target labels that you would like to propagate
in your alerts or use in your dashboards. You cannot use both by and without in the
same aggregation.

The query:

sum by(job, instance, device)(node_filesystem_size_bytes)

will produce the same result as the query in the preceding section using without:

{device="/dev/sda1",instance="localhost:9100",job="node"} 100663296
{device="/dev/sda5",instance="localhost:9100",job="node"} 90131324928
{device="tmpfs",instance="localhost:9100",job="node"} 2486128640

However, if instance or job had not been specified, then they wouldn’t have defined
the group and would not be in the output. Generally, you should prefer to use
without rather than by for this reason.

There are two cases where you might find by more useful. The first is that unlike
without, by does keep the __name__ label if told explicitly. This allows you to use
expressions like:

sort_desc(count by(__name__)({__name__=~".+"}))

to investigate how many time series have the same metric names.1

Grouping | 251

The second is cases where you do want to remove any labels you do not know
about. For example, info metrics, as discussed in “Info” on page 96, are expected to
add more labels over time. To count how many machines were running each kernel
version, you could use:

count by(release)(node_uname_info)

which on our single machine test setup returns:

{release="4.4.0-101-generic"} 1

You can use sum with an empty by, and can even omit the by. That is to say that:

sum by()(node_filesystem_size_bytes)

and:

sum(node_filesystem_size_bytes)

are exactly equivalent and will give a result like:

{} 92718116864

This is a single time series, and that time series has no labels.

If you executed the expression:

sum(non_existent_metric)

the result would be an instant vector with no time series, which will show up in the
expression browser’s Console tab as “no data.”

If the input to an aggregation operator is an empty instant
vector, it will output an empty instant vector. Thus, count

by(foo)(non_existent_metric) will be empty rather than 0, as
count and other aggregators don’t have any labels to work with.
count(non_existent_metric) is consistent with this, and also
returns an empty instant vector.

Operators
All 11 aggregation operators use the same grouping logic. You can control this with
one of without or by. What differs between aggregation operators is what they do
with the grouped data.

sum
sum is the most common aggregator; it adds up all the values in a group and returns
that as the value for the group. For example:

sum without(fstype, mountpoint, device)(node_filesystem_size_bytes)

252 | Chapter 14: Aggregation Operators

2 Including the _sum, _count, and _bucket of histograms and summary metrics.

3 The inner aggregation does not have to be count; anything that returns the same set of time series, such as
sum, would also work. This is because the outer count ignores the values of these time series.

would return the total size of the filesystems of each of your machines.

When dealing with counters,2 it is important that you take a rate before aggregating
with sum:

sum without(device)(rate(node_disk_read_bytes_total[5m]))

If you were to take a sum across counters directly, the result would be meaningless, as
different counters could have been initialized at different times depending on when
the exporter started, restarted, or any particular children were first used.

count
The count aggregator counts the number of time series in a group, and returns it as
the value for the group. For example:

count without(device)(node_disk_read_bytes_total)

would return the number of disk devices a machine has. Our machine only has one
disk, so we get:

{instance="localhost:9100",job="node"} 1

Here it is OK not to use rate with a counter, as you care about the existence of the
time series rather than its value.

Unique label values

You can also use count to count how many unique values a label has. For example, to
count the number of CPUs in each of your machines, you could use:

count without(cpu)(count without (mode)(node_cpu_seconds_total))

The inner count3 removes the other instrumentation label, mode, returning one time
series per CPU per instance:

{cpu="0",instance="localhost:9100",job="node"} 8
{cpu="1",instance="localhost:9100",job="node"} 8
{cpu="2",instance="localhost:9100",job="node"} 8
{cpu="3",instance="localhost:9100",job="node"} 8

The outer count then returns the number of CPUs that each instance has:

{instance="localhost:9100",job="node"} 4

Operators | 253

4 Technically it is called an arithmetic mean. In the unlikely event you need a geometric mean, the ln and exp
functions combined with the avg aggregator can be used to calculate that.

5 This is as 1 / 0 = NaN.

If you didn’t want a per-machine breakdown, such as if you were investigating
whether certain labels had high cardinality, you could use the by modifier to look at
only one label:

count(count by(cpu)(node_cpu_seconds_total))

which would produce a single sample with no labels, such as:

{} 4

avg
The avg aggregator returns the average of the values4 of the time series in the group as
the value for the group. For example:

avg without(cpu)(rate(node_cpu_seconds_total[5m]))

would give you the average usage of each CPU mode for each Node Exporter instance
with a result such as:

{instance="localhost:9100",job="node",mode="idle"} 0.9095948275861836
{instance="localhost:9100",job="node",mode="iowait"} 0.005543103448275879
{instance="localhost:9100",job="node",mode="irq"} 0
{instance="localhost:9100",job="node",mode="nice"} 0.0013620689655172522
{instance="localhost:9100",job="node",mode="softirq"} 0.0001465517241379329
{instance="localhost:9100",job="node",mode="steal"} 0
{instance="localhost:9100",job="node",mode="system"} 0.015836206896552414
{instance="localhost:9100",job="node",mode="user"} 0.06054310344827549

This gives you the exact same result as:

 sum without(cpu)(rate(node_cpu_seconds_total[5m]))
/
 count without(cpu)(rate(node_cpu_seconds_total[5m]))

but it is both more succinct and more efficient to use avg.

When using avg, sometimes you may find that a NaN in the input is causing the entire
result to become NaN. This is because any floating-point arithmetic that involves NaN
will have NaN as a result.

You may wonder how to filter out these NaNs in the input, but that is the wrong
question to ask. Usually this is due to attempting to average averages, and one of
the denominators of the first averages was 0.5 Averaging averages is not statistically
valid, so what you should do instead is aggregate using sum and then finally divide, as
shown in “Summary” on page 232.

254 | Chapter 14: Aggregation Operators

6 Prometheus uses the population standard deviation rather than the sample standard deviation, as you will
usually be looking at all the values you are interested in rather than a random subset.

7 For nonnormally distributed data, Chebyshev’s inequality provides a weaker bound.

group
The group aggregator returns 1 for each of the time series in the group as the value
for the group. For example:

count by (instance)(
 group by (fstype,instance) (node_filesystem_files)
)

That query would return the number of different filesystem types for each instance.

In this case, any aggregation could have worked (sum, count) in place of group. How‐
ever, using group makes it clear for anyone reading the query that we are interested
in the grouping and the resulting labels themselves rather than the value produced by
the inner aggregation operator.

stddev and stdvar
The standard deviation is a statistical measure of how spread out a set of numbers is.
For example, if you had the numbers [2,4,6], then the standard deviation would be
1.633.6 The numbers [3,4,5] have the same average of 4, but a standard deviation of
0.816.

The main use of the standard deviation in monitoring is to detect outliers. In nor‐
mally distributed data you would expect that about 68% of samples would be within
one standard deviation of the mean, and 95% within two standard deviations.7 If one
instance in a job has a metric several standard deviations away from the average,
that’s a good indication that something is wrong with it.

For example, you could find all instances that were at least two standard deviations
above the average using an expression such as:

 some_gauge
> ignoring (instance) group_left()
 (
 avg without(instance)(some_gauge)
 +
 2 * stddev without(instance)(some_gauge)
)

This uses one-to-many vector matching, which will be discussed in “Many-to-One
and group_left” on page 268. If your values are all tightly bunched, then this may
return some time series that are more than two standard deviations away, but still
operating normally and close to the average. You could add an additional filter that

Operators | 255

8 If the exponentiation operator had existed at the time we were adding stdvar and stddev, then stdvar would
probably not have been added.

9 If you want the input time series returned, use topk or bottomk.

10 In floating-point math, any comparison with NaN always returns false. Aside from causing oddities such as
NaN != NaN returning false, a naive implementation of min and max would (and once did) get stuck on a NaN if
it was the first value examined.

11 The k is 2 in this case.

the value has to be at least, say, 20% higher than the average to protect against this.
This is also a rare case where it is OK to take an average of an average, such as if you
applied this to average latency.

The standard variance is the standard deviation squared8 and has statistical uses.

min and max
The min and max aggregators return the minimum or maximum value within a group
as the value of the group, respectively. The same grouping rules apply as elsewhere, so
the output time series will have the labels of the group.9 For example:

max without(device, fstype, mountpoint)(node_filesystem_size_bytes)

will return the size of the biggest filesystem on each instance, which for us returns:

{instance="localhost:9100",job="node"} 90131324928

The max and min aggregators will only return NaN if all values in a group are NaN.10

topk and bottomk
topk and bottomk are different from the other aggregators discussed so far in three
ways. First, the labels of time series they return for a group are not the labels of the
group; second, they can return more than one time series per group; and third, they
take an additional parameter.

topk returns the k time series with the biggest values, so for example:

topk without(device, fstype, mountpoint)(2, node_filesystem_size_bytes)

would return up to two11 time series per group, such as:

node_filesystem_size_bytes{device="/dev/sda5",fstype="ext4",
 instance="localhost:9100",job="node",mountpoint="/"} 90131324928
node_filesystem_size_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run"} 826961920

As you can see, topk returns input time series with all their labels, including the
__name__ label, which holds the metric name. The result is also sorted.

256 | Chapter 14: Aggregation Operators

12 Also known as the 1st and 3rd quartiles.

bottomk is the same as topk, except that it returns the k time series with the smallest
values rather than the k biggest values. Both aggregators will, where possible, avoid
returning time series with NaN values.

There is a gotcha when using these aggregators with the query_range HTTP API
endpoint. As was discussed in “query_range” on page 245, the evaluation of each step
is independent. If you use topk, it is possible that the top time series will change from
step to step. So a topk(5, some_gauge) for a query_range with 1,000 steps could in
the worst case return 5,000 different time series.

The way to handle this is to use the at (@) modifier, as discussed in “At Modifier” on
page 242.

quantile
The quantile aggregator returns the specified quantile of the values of the group as
the group’s return value. As with topk, quantile takes a parameter.

So, for example, if we wanted to know across the different CPUs in each of our
machines what the 90th percentile of the system mode CPU usage is, we could use:

quantile without(cpu)(0.9, rate(node_cpu_seconds_total{mode="system"}[5m]))

which produces a result like:

{instance="localhost:9100",job="node",mode="system"} 0.024558620689654007

This means that 90% of our CPUs are spending at least 0.02 seconds per second in
the system mode. This would be a more useful query if we had tens of CPUs in our
machine, rather than the four it actually has.

In addition to the mean, you could use quantile to show the median, 25th, and 75th
percentiles12 on your graphs. For example, for process CPU usage the expressions
would be:

average, arithmetic mean
avg without(instance)(rate(process_cpu_seconds_total[5m]))

0.25 quantile, 25th percentile, 1st or lower quartile
quantile without(instance)(0.25, rate(process_cpu_seconds_total[5m]))

0.5 quantile, 50th percentile, 2nd quartile, median
quantile without(instance)(0.5, rate(process_cpu_seconds_total[5m]))

0.75 quantile, 75th percentile, 3rd or upper quartile
quantile without(instance)(0.75, rate(process_cpu_seconds_total[5m]))

Operators | 257

This would give you a sense of how your different instances for a job are behaving,
without having to graph each instance individually. This allows you to keep your
dashboards readable as the number of underlying instances grows. Personally we find
that per-instance graphs break down somewhere around three to five instances.

quantile, histogram_quantile, and quantile_over_time
As you may have noticed by now, there is more than one PromQL function or
operator with quantile in the name.

The quantile aggregator works across an instant vector in an aggregation group.

The quantile_over_time function works across a single time series at a time in a
range vector.

The histogram_quantile function works across the buckets of one histogram metric
child at a time in an instant vector.

count_values
The final aggregation operator is count_values. Like topk it takes a parameter and
can return more than one time series from a group. What it does is build a frequency
histogram of the values of the time series in the group, with the count of each value as
the value of the output time series and the original value as a new label.

That’s a bit of a mouthful, so we will show you an example. Say you had a time series
called software_version with the following values:

software_version{instance="a",job="j"} 7
software_version{instance="b",job="j"} 4
software_version{instance="c",job="j"} 8
software_version{instance="d",job="j"} 4
software_version{instance="e",job="j"} 7
software_version{instance="f",job="j"} 4

If you evaluated the query:

count_values without(instance)("version", software_version)

on these time series, you would get the result:

{job="j",version="7"} 2
{job="j",version="8"} 1
{job="j",version="4"} 3

258 | Chapter 14: Aggregation Operators

13 For versions that cannot be represented as floating-point values, you can use an info metric, as discussed in
“Info” on page 96.

There were two time series in the group with a value of 7, so a time series with a
version="7" plus the group labels was returned with the value 2. The result is similar
for the other time series.

There is no bucketing involved when the frequency histogram is created; the exact
values of the time series are used. Thus this is only really useful with integer values
and where there will not be too many unique values.

This is most useful with version numbers,13 or with the number of objects of some
type that each instance of your application sees. If you have too many versions
deployed at once, or different applications are continuing to see different numbers of
objects, something might be stuck somewhere.

count_values can be combined with count to calculate the number of unique values
for a given aggregation group. For example, the number of versions of software that
are deployed can be calculated with:

count without(version)(
 count_values without(instance)("version", software_version)
)

which in this case would return:

{job="j"} 3

You could also combine count_values with count in the other direction; for exam‐
ple, to see how many of your machines had how many disk devices:

count_values without(instance)(
 "devices",
 count without(device) (node_disk_io_now)
)

In our case we have one machine with five disk devices:

{devices="5",job="node"} 1

Now that you understand aggregators, we will look at binary operators, like addition
and subtraction, and how vector matching works.

Operators | 259

1 In contrast to unary operators, which only take one operand. PromQL has + and - unary operators.

2 Internally, PromQL also has a string type, but this is only used as an argument to count_values,
label_replace, and label_join.

3 You may also see the convention {}: 0 to represent a single sample.

CHAPTER 15

Binary Operators

You will want to do more with your metrics than simply aggregate them, which is
where the binary operators come in. Binary operators are operators that take two
operands,1 such as the addition and equality operators.

Binary operators in allow for more than simple arithmetic on instant vectors; you can
also apply a binary operator to two instant vectors with grouping based on labels.
This is where the real power of PromQL comes out, allowing classes of analysis that
few other metrics systems offer.

PromQL has three sets of binary operators: arithmetic operators, comparison opera‐
tions, and logical operators. This chapter will show you how to use them.

Working with Scalars
In addition to instant vectors and range vectors, there is another type of value known
as a scalar.2 Scalars are single numbers with no dimensionality. For example, 0 is a
scalar with the value zero, while {} 0 is an instant vector containing a single sample
with no labels and the value zero.3

Arithmetic Operators
You can use scalars in arithmetic with an instant vector to change the values in the
instant vector. For example:

261

4 If you are using a dashboarding tool like Grafana, it’s generally best to let it handle creating human-readable
units for metrics that are already in base units, such as bytes.

process_resident_memory_bytes / 1024

would return:

{instance="localhost:9090",job="prometheus"} 21376
{instance="localhost:9100",job="node"} 13316

which is the process memory usage, in kilobytes.4 You will note that the division
operator was applied to all time series in the instant vector returned by the
process_resident_memory_bytes selector, and that the metric name was removed
as it is no longer the metric process_resident_memory_bytes.

Even when you are using arithmetic operators in a way that doesn’t
change the value, the metric name will still be removed for consis‐
tency. For example, the result of some_gauge + 0 will not have a
metric name.

All six arithmetic operations work similarly, with the semantics you’d expect from
other programming languages. They are:

• + addition•
• - subtraction•
• * multiplication•
• / division•
• % modulo•
• ^ exponentiation•

The modulo operator is a floating-point modulo and can return noninteger results if
you provide it with noninteger input. For example:

5 % 1.5

will return:

0.5

As this example demonstrates, you can also use binary arithmetic operators when
both operands are scalars. The result will be a scalar. This is mostly useful for
readability, as it is much easier to understand the intent of (1024 * 1024 * 1024)
than it is 1073741824.

262 | Chapter 15: Binary Operators

In addition, you can put the scalar operand on the left side of the operator and an
instant vector on the right, so for example:

1e9 - process_resident_memory_bytes

would subtract the process memory from a billion.

You can also use arithmetic operators with instant vectors on both sides, which is
covered in “Vector Matching” on page 265.

Trigonometric Operator
The atan2 operator returns the arc tangent of the division of two vectors, using the
signs of the two to determine the quadrant of the return value:

x atan2 y

This operator allows you to execute atan2 on two vectors using vector matching,
which isn’t available with normal functions. It acts in the same manner as arithmetic
operators (+, -, *, …).

Comparison Operators
The comparison operators are as follows, with the usual meanings:

• == equals•
• != not equals•
• > greater than•
• < less than•
• >= greater than or equal to•
• <= less than or equal to•

What is a little different is that the comparison operators in PromQL are filtering.
That is to say that if you had the samples:

process_open_fds{instance="localhost:9090",job="prometheus"} 14
process_open_fds{instance="localhost:9100",job="node"} 7

and used an instant vector in a comparison with a scalar, such as in the expression:

process_open_fds > 10

then you would get the result:

process_open_fds{instance="localhost:9090",job="prometheus"} 14

Working with Scalars | 263

5 It is possible to use filtering correctly with careful application of the or operator, but it’s more complicated and
error prone.

As the value can’t change, the metric name has been preserved. When comparing
a scalar and an instant vector, it doesn’t matter which side each is on; it is always
elements of the instant vector that are returned.

As PromQL deals with floating-point numbers, some care is
required when using == and !=. Floating-point calculations can
produce results that are very slightly different depending on
exactly what the values are and in what order the operations are
performed.
If you want to do equality on noninteger values, it is better to
instead check that their difference is less than some small number
which is called an epsilon. For example, you could do:

(some_gauge - 1) < 1e-6 > -1e-6

to check if a gauge has a value of 1 allowing for inaccuracy of one
in a million.

You cannot do a filtering comparison between two scalars, as to be consistent with
arithmetic operations between two scalars it’d have to return a scalar. This doesn’t
allow for filtering, as there’s no way to have an empty scalar like you can have an
empty instant vector.

bool modifier
Filtering comparisons are primarily useful in alerting rules, as discussed in Chap‐
ter 18, and generally to be avoided elsewhere.5 We will show you why.

Continuing on from the preceding example, say you wanted to see how many of your
processes for each job had more than 10 open file descriptors. The obvious way to do
this would be:

count without(instance)(process_open_fds > 10)

which would return the result:

{job="prometheus"} 1

This correctly indicates that there is 1 Prometheus process with more than 10 open
file descriptions. It does not report that the Node Exporter has zero such processes.
This is can be a subtle gotcha because as long as one time series is not filtered away,
everything seems to be OK.

264 | Chapter 15: Binary Operators

What you need is some way to do the comparison but not have it filter. This is what
the bool modifier does; for each comparison it returns a 0 for false or a 1 for true.

For example:

process_open_fds > bool 10

will return:

{instance="localhost:9090",job="prometheus"} 1
{instance="localhost:9100",job="node"} 0

which as expected has one output sample per sample in the input instant vector.

From there you can sum up to get the number of processes for each job that have
more than 10 open file descriptors:

sum without(instance)(process_open_fds > bool 10)

which produces the result you originally wanted:

{job="prometheus"} 1
{job="node"} 0

You could use a similar approach to find the proportion of machines with more than
four disk devices:

avg without(instance)(
 count without(device)(node_disk_io_now) > bool 4
)

This works by first using a count aggregation to find the number of disks reported
by each Node Exporter, then seeing how many have more than four, and finally
averaging across machines to get the proportion. The trick here is that the values
returned by the bool modifier are all 0 and 1, so the count is the total number of
machines, and the sum is the number of machines meeting the criteria. The avg is the
count divided by the sum, giving you a ratio or proportion.

The bool modifier is the only way you can compare scalars, as:

42 <= bool 13

will return:

0

where the 0 indicates false.

Vector Matching
Using operators between scalars and instant vectors will cover many of your needs,
but using operators between two instant vectors is where PromQL’s power really
starts to shine.

Vector Matching | 265

When you have a scalar and an instant vector, it is obvious that the scalar can be
applied to each sample in the vector. With two instant vectors, which samples should
apply to which other samples? This matching of the instant vectors is known as vector
matching.

One-to-One
In the simplest cases there will be a one-to-one mapping between your two vectors.
Say that you had the following samples:

process_open_fds{instance="localhost:9090",job="prometheus"} 14
process_open_fds{instance="localhost:9100",job="node"} 7
process_max_fds{instance="localhost:9090",job="prometheus"} 1024
process_max_fds{instance="localhost:9100",job="node"} 1024

Then when you evaluated the expression:

 process_open_fds
/
 process_max_fds

you would get the result:

{instance="localhost:9090",job="prometheus"} 0.013671875
{instance="localhost:9100",job="node"} 0.0068359375

What has happened here is that samples with exactly the same labels, except for
the metric name in the label __name__, were matched together. That is to say that
the two samples with the labels {instance="localhost:9090",job="prometheus"}
got matched together, and the two samples with the labels {instance="local
host:9100",job="node"} got matched together.

In this case there was a perfect match, with each sample on both sides of the operator
being matched. If a sample on one side had no match on the other side, then it would
not be present in the result, as binary operators need two operands.

If a binary operator returns an empty instant vector when you were
expecting a result, it is probably because the labels of the samples in
the operands don’t match. This is often due to a label that is present
on one side of the operator but not the other.

Sometimes you will want to match two instant vectors whose labels do not quite
match. Similar to how aggregation allows you to specify which labels matter, as
discussed in “Grouping” on page 249, vector matching also has clauses controlling
which labels are considered.

266 | Chapter 15: Binary Operators

6 The cpu label was aggregated away by both sums, so is not present in the output either.

7 You could exclude the on(instance, job) here as the left- and righthand side both have only instance and
job labels.

You can use the ignoring clause to ignore certain labels when matching, similar
to how without works for aggregation. Say you were working with node_cpu_
seconds_total, which has cpu and mode as instrumentation labels, and wanted to
know what proportion of time was being spent in the idle mode for each instance.
You could use the expression:

 sum without(cpu)(rate(node_cpu_seconds_total{mode="idle"}[5m]))
/ ignoring(mode)
 sum without(mode, cpu)(rate(node_cpu_seconds_total[5m]))

This will give you a result such as:

{instance="localhost:9100",job="node"} 0.8423353718871361

Here the first sum produces an instant vector with a mode="idle" label, whereas the
second sum produces an instant vector with no mode label. Usually vector matching
will fail to match the samples, but with ignoring(mode) the mode label is discarded
when the vectors are being grouped, and matching succeeds. As the mode label was
not in the match group, it is not in the output.6

You can tell the preceding expression is correct in terms of vector
matching by inspection, without having to know anything about
the underlying time series. The removal of cpu is balanced on both
sides, and ignoring(mode) handles one side having a mode and the
other not.
This can be trickier when there are different time series with differ‐
ent labels in play, but looking at expressions in terms of how the
labels flow is a handy way for you to spot errors.

The on clause allows you to consider only the labels you provide, similar to how by
works for aggregation. The expression:

 sum by(instance, job)(rate(node_cpu_seconds_total{mode="idle"}[5m]))
/ on(instance, job)
 sum by(instance, job)(rate(node_cpu_seconds_total[5m]))

will produce the same result as the previous expression,7 but as with by, the on clause
has the disadvantage that you need to know all labels that are currently on the time
series or that may be present in the future in other contexts.

The value that is returned for the arithmetic operators is the result of the calculation,
but you may be wondering what happens for the comparison operators when there

Vector Matching | 267

8 Running out of file descriptors can break applications in fun ways, and you should usually try to ensure that
your applications always have enough.

9 Alert templates have ready access to the value of an alert’s PromQL expression. This is discussed in “Annota‐
tions and Templates” on page 318.

10 A missing mode label due to aggregating it away would count as a single label value of the empty string.

are two instant vectors. The answer is that the value from the lefthand side is
returned. For example, the expression:

 process_open_fds
>
 (process_max_fds * .5)

will return for you the value of process_open_fds for all instances whose open file
descriptors are more than halfway to the maximum.8

If you had instead used:

 (process_max_fds * .5)
<
 process_open_fds

you would get half the maximum file descriptors as the return value. While the result
will have the same labels, this value might be semantically less useful when alerting9

or when used in a dashboard! In general, a current value is more informative than the
limit, so you should try to structure your math so that the most interesting number is
on the lefthand side of a comparison.

Many-to-One and group_left
If you were to remove the matcher on mode from the preceding section and try to
evaluate:

 sum without(cpu)(rate(node_cpu_seconds_total[5m]))
/ ignoring(mode)
 sum without(mode, cpu)(rate(node_cpu_seconds_total[5m]))

you would get the error:

multiple matches for labels:
 many-to-one matching must be explicit (group_left/group_right)

This is because the samples no longer match one-to-one, as there are multiple sam‐
ples with different mode labels on the lefthand side for each sample on the righthand
side. This can be a subtle failure mode, as a time series may appear later on that
breaks your expression. You can see that this is a potential issue, as looking at the
label flow there’s nothing restricting the mode label to one potential value10 on the
lefthand side.

268 | Chapter 15: Binary Operators

11 There can still only be one sample per group on the righthand side of the operand, as group_left only
enables many-to-one matching, not many-to-many matching.

12 If the labels from the righthand side were used, you would get the same labels for each sample from the
groups on the left, which would clash.

Errors like this are usually due to incorrectly written expressions, so PromQL does
not attempt to do anything smart by default. Instead, you must specifically request
that you want to do many-to-one matching using the group_left modifier.

group_left lets you specify that there can be multiple matching samples in the group
of the lefthand operand.11 For example:

 sum without(cpu)(rate(node_cpu_seconds_total[5m]))
/ ignoring(mode) group_left
 sum without(mode, cpu)(rate(node_cpu_seconds_total[5m]))

will produce one output sample for each different mode label within each group on
the lefthand side:

{instance="localhost:9100",job="node",mode="irq"} 0
{instance="localhost:9100",job="node",mode="nice"} 0
{instance="localhost:9100",job="node",mode="softirq"} 0.00005226389784152013
{instance="localhost:9100",job="node",mode="steal"} 0
{instance="localhost:9100",job="node",mode="system"} 0.01720353303949279
{instance="localhost:9100",job="node",mode="user"} 0.10345203045243238
{instance="localhost:9100",job="node",mode="idle"} 0.8608691486211044
{instance="localhost:9100",job="node",mode="iowait"} 0.01842302398912871

group_left always takes all of its labels from samples of your operand on the
lefthand side. This ensures that the extra labels that are on the left side that require
this to be many-to-one vector matching are preserved.12

This is much easier than having to run a one-to-one expression with a matcher
for each potential mode label: group_left does it all for you in one expression. You
can use this approach to determine the proportion each label value within a metric
represents of the whole, as shown in the preceding example, or to compare a metric
from a leader of a cluster against the replicas.

There is another use for group_left—adding labels from info metrics to other
metrics from a target. Instrumentation with info metrics was covered in “Info” on
page 96. The role of info metrics is to allow you to provide labels that would be useful
for a target or metric to have but that would clutter up the metric if you were to use it
as a normal label.

The prometheus_build_info metric, for example, provides you with build informa‐
tion from Prometheus:

Vector Matching | 269

13 There’s no way for you to request all the labels to be copied over, as then you would no longer know what
labels the output metric had.

14 The convention for whether a metric that has a single info-style label should have an _info suffix is not fully
resolved yet.

prometheus_build_info{branch="HEAD",goversion="go1.10",
 instance="localhost:9090",job="prometheus",
 revision="bc6058c81272a8d938c05e75607371284236aadc",version="2.2.1"}

You can join this with metrics such as up:

 up
* on(instance) group_left(version)
 prometheus_build_info

which will produce a result like:

{instance="localhost:9090",job="prometheus",version="2.2.1"} 1

You can see that the version label has been copied over from the righthand operand
to the lefthand operand as was requested by group_left(version), in addition
to returning all the labels from the lefthand operand as group_left usually does.
You can specify as many labels as you like to group_left, but usually it’s only one or
two.13 This approach works no matter how many instrumentation labels the lefthand
side has, as the vector matching is many-to-one.

The preceding expression used on(instance), which relies on each instance label
only being used for one target within your Prometheus. While this is often the case, it
isn’t always, so you may also need to add other labels such as job to the on clause.

prometheus_build_info applies to a whole target. There are also info-style14 metrics
such as node_hwmon_sensor_label mentioned in “Hwmon Collector” on page 130
that apply to children of a different metric:

node_hwmon_sensor_label{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_0",sensor="temp2"} 1
node_hwmon_sensor_label{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_1",sensor="temp3"} 1

node_hwmon_temp_celsius{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",sensor="temp1"} 42
node_hwmon_temp_celsius{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",sensor="temp2"} 42
node_hwmon_temp_celsius{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",sensor="temp3"} 41

The node_hwmon_sensor_label metric has children that match with some (but not
all) of the time series in node_hwmon_temp_celsius. In this case you know that there

270 | Chapter 15: Binary Operators

is only one additional label (which is called label), so you can use ignoring with
group_left to add this label to the node_hwmon_temp_celsius samples:

 node_hwmon_temp_celsius
* ignoring(label) group_left(label)
 node_hwmon_sensor_label

which will produce results such as:

{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_0",sensor="temp2"} 42
{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_1",sensor="temp3"} 41

Notice that there is no sample with sensor="temp1" as there was no such sample in
node_hwmon_sensor_label (how to match sparse instant vectors will be covered in
“or operator” on page 271).

There is also a group_right modifier that works in the same way as group_left
except that the one and the many sides are switched, with the many side now being
your operand on the righthand side. Any labels you specify in the group_right
modifier are copied from the left to the right. For the sake of consistency, you should
prefer group_left.

Many-to-Many and Logical Operators
There are three logical or set operators you can use:

• or union•
• and intersection•
• unless set subtraction•

There is no not operator, but the absent function discussed in “Missing Series,
absent, and absent_over_time” on page 287 serves a similar role.

All the logical operators work in a many-to-many fashion, and they are the only
operators that work many-to-many. They are different from the arithmetic and com‐
parison operators you have already seen in that no math is performed; all that matters
is whether a group contains samples.

or operator

In the preceding section, node_hwmon_sensor_label did not have a sample to go with
every node_hwmon_temp_celsius, so results were only returned for samples that were
present in both instant vectors. Metrics with inconsistent children, or whose children
are not always present, are tricky to work with, but you can deal with them using the
or operator.

Vector Matching | 271

15 NaN will stay as NaN, but in practice there will be another time series with the same labels and no NaN values
that you could use instead.

How the or operator works is that for each group where the group on the lefthand
side has samples, then they are returned; otherwise, the samples in the group on the
righthand side are returned. If you are familiar with SQL, this operator can be used in
a similar way as the SQL COALESCE function, but with labels.

Continuing the example from the preceding section, or can be used to substitute the
missing time series from node_hwmon_sensor_label. All you need is some other time
series that has the labels you need, which in this case is node_hwmon_temp_celsius.
node_hwmon_temp_celsius does not have the label label, but all the other labels
match up so you can ignore this using ignoring:

 node_hwmon_sensor_label
or ignoring(label)
 (node_hwmon_temp_celsius * 0 + 1)

The vector matching produced three groups of labels. The first two groups had a
sample from node_hwmon_sensor_label so that was what was returned, including the
metric name as there was nothing to change it. For the third group, however, which
included sensor="temp1", there was no sample in the group for the lefthand side,
so the values in the group from the righthand side were used. Because arithmetic
operators were used on the value, the metric name was removed.

x * 0 + 1 will change all15 the values of the x instant vector to 1.
This is also useful when you want to use group_left to copy labels,
as 1 is the identity element for multiplication, which is to say it
does not change the value you are multiplying.

This expression can now be used in the place of node_hwmon_sensor_label:

 node_hwmon_temp_celsius
* ignoring(label) group_left(label)
 (
 node_hwmon_sensor_label
 or ignoring(label)
 (node_hwmon_temp_celsius * 0 + 1)
)

which will produce:

{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",sensor="temp1"} 42
{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_0",sensor="temp2"} 42

272 | Chapter 15: Binary Operators

16 up is not a scraped metric; Prometheus adds it after every scrape whether the scrape succeeds or fails.

{chip="platform_coretemp_0",instance="localhost:9100",
 job="node",label="core_1",sensor="temp3"} 41

The sample with sensor="temp1" is now present in your result. It has no label called
label, which is the same as saying that that label label has the empty string as a
value.

In simpler cases you will be working with metrics without any instrumentation labels.
For example, you might be using the textfile collector, as covered in “Textfile Collec‐
tor” on page 134, and expecting it to expose a metric called node_custom_metric. In
the event that metric doesn’t exist, you would like to return 0 instead. In cases like
this, you can use the up metric that is associated with every target:

 node_custom_metric
or
 up * 0

This has a small problem in that it will return a value even for a failed scrape, which
is not how scraped metrics work.16 It will also return results for other jobs. You can fix
this with a matcher and some filtering:

 node_custom_metric
or
 (up{job="node"} == 1) * 0

Another way you can use the or operator is to return the larger of two series:

(a >= b) or b

If a is larger it will be returned by the comparison, and then the or operator since the
group on the lefthand side was not empty. If, on the other hand, b is larger, then the
comparison will return nothing, and or will return b as the group on the lefthand side
was empty.

unless operator

The unless operator does vector matching in the same way as the or operator,
working based on whether groups from the right and left operands are empty or have
samples. The unless operator returns the lefthand group, unless the righthand group
has members, in which case it returns no samples for that group.

You can use unless to restrict what time series are returned based on an expression.
For example, if you wanted to know the average CPU usage of processes except those
using less than 100 MB of resident memory, you could use the expression:

Vector Matching | 273

17 Prior to Prometheus 2.x, PromQL had an IF keyword that was used in alerting, so while Brian had wondered
if renaming the and operator to if would have been a good idea, it was not possible.

 rate(process_cpu_seconds_total[5m])
unless
 process_resident_memory_bytes < 100 * 1024 * 1024

unless can also be used to spot when a metric is missing from a target. For example:

 up{job="node"} == 1
unless
 node_custom_metric

would return a sample for every instance that was missing the node_custom_metric
metric, which you could use in alerting.

By default, as with all binary operators, unless looks at all labels when grouping. If
node_custom_metric had instrumentation labels, you could use on or ignoring to
check that at least one relevant time series existed without having to know the values
of the other labels:

 up == 1
unless on (job, instance)
 node_custom_metric

Even if there are multiple samples from the right operand in a group, this is OK as
unless uses many-to-many matching.

and operator

The and operator is the opposite of the unless operator. It returns a group from the
lefthand operand only if the matching righthand group has samples; otherwise, it
returns no samples for that match group. You can think of it as an if operator.17

You will use the and operator most commonly in alerting to specify more than one
condition. For example, you might want to return when both latency is high and
there is more than a trickle of user requests. To do this for Prometheus for handlers
that were taking over a second on average and had at least one request per second,
you could use:

 (
 rate(http_request_duration_seconds_sum{job="prometheus"}[5m])
 /
 rate(http_request_duration_seconds_count{job="prometheus"}[5m])
) > 1
and
 rate(http_request_duration_seconds_count{job="prometheus"}[5m]) > 1

274 | Chapter 15: Binary Operators

This will return a sample for every individual handler on every prometheus job, so it
could get a little spammy even with the one request per second restriction. Usually
you would want to aggregate across a job when alerting.

You can use on and ignoring with the and operator, as you can with the other binary
operators. In particular, on() can be used to have a condition that has no common
labels at all between the two operands. You can use this, for example, to limit the time
of day an expression will return results for:

 (
 rate(http_request_duration_microseconds_sum{job="prometheus"}[5m])
 /
 rate(http_request_duration_microseconds_count{job="prometheus"}[5m])
) > 1000000
and
 rate(http_request_duration_microseconds_count{job="prometheus"}[5m]) > 1
and on()
 hour() >= 9 < 17

The hour function is covered in “minute, hour, day_of_week, day_of_month,
day_of_year, days_in_month, month, and year” on page 284; it returns an instant
vector with one sample with no labels and the hour of the UTC day of the query
evaluation time as the value.

Operator Precedence
When evaluating an expression with multiple binary operators, PromQL does not
simply go from left to right. Instead, there is an order of operators that is largely the
same as the order used in other languages:

1. ^1.
2. * / % atan22.
3. + -3.
4. == != > < >= <=4.
5. unless and5.
6. or6.

For example, a or b * c + d is the same as a or ((b * c) + d).

Operator Precedence | 275

All operators except ^ are left-associative. That means that a / b * c is the same as
(a / b) * c, but a ^ b ^ c is a ^ (b ^ c).

You can use parentheses to change the order of evaluation. We also recommend
adding parentheses where the evaluation order may not be immediately clear for an
expression, as not everyone will have memorized the operator precedence.

Now that you understand both aggregators and operators, let’s look at the final part of
PromQL: functions.

276 | Chapter 15: Binary Operators

CHAPTER 16

Functions

PromQL has 69 functions as of 2.37.0, and offers you a wide variety of functionality,
from common math to functions specifically for dealing with counter and histogram
metrics. In this chapter you will learn about how all the functions work and how they
can be used.

Almost all PromQL functions return instant vectors, and the three that don’t (time,
pi, and scalar) return scalars. No functions return range vectors, though multiple
functions, including rate and avg_over_time that you have already seen, take a
range vector as input.

Put another way, functions generally work either across the samples of a single time
series at a time or across the samples of an instant vector. If you want to process an
entire range vector at once, you would need to use subqueries.

PromQL is statically typed, functions do not change their return value based on the
input types. In fact, the input types for each function are also fixed. Where a function
needs to work with two different types, two different names are used. For example,
you use the avg aggregator on instant vectors and the avg_over_time function on
range vectors.

There are no official categories for the functions, but we have grouped related func‐
tions together.

Changing Type
At times you will have a vector but need a scalar, or vice versa. There are two
functions that allow you to do so: vector and scalar.

277

vector
The vector function takes a scalar value, and converts it into an instant vector with
one sample without a label and the given value. For example, the expression:

vector(1)

will produce:

{} 1

This is useful if you need to ensure an expression returns a result, but can’t depend on
any particular time series to exist. For example:

sum(some_gauge) or vector(0)

will always return one sample, even if some_gauge has no samples. Depending on the
use case, the bool modifier, as discussed in “bool modifier” on page 264, may be a
better choice than the or operator (see “or operator” on page 271).

scalar
The scalar function takes an instant vector with a single sample and converts it to a
scalar with the value the input sample had. If there is not exactly one sample, then NaN
will be returned to you.

This is mostly useful when working with scalar constants, but you should use math
functions that only work on instant vectors. For example, if you wanted the natural
logarithm of two as a scalar, rather than typing out 0.6931471805599453 and hoping
anyone reading it recognized the significance of number, you could use:

scalar(ln(vector(2)))

This can also make certain expressions simpler to write. For example, if you wanted
to see which servers were started in the current year, you could do:

 year(process_start_time_seconds)
==
 scalar(year())

rather than:

 year(process_start_time_seconds)
== on() group_left
 year()

as scalar comparisons are a little easier to understand than vector matching with
group_left, and this is OK because you know that year here will only ever return
one sample.

278 | Chapter 16: Functions

1 A 99% success rate is two 9s.

But use of the scalar function should be limited because using scalar loses all of
your labels and with it your ability to do vector matching. For example:

 sum(rate(node_cpu_seconds_total{mode!="idle",instance="localhost:9090"}[5m]))
/
 scalar(count(node_cpu_seconds_total{mode="idle",instance="localhost:9090"))

will give you the proportion of time a machine’s CPU is not idle, but you would then
have to alter and reevaluate this expression for every single instance.

Taking advantage of the full power of PromQL, you can do:

 sum without (cpu, mode)(
 rate(node_cpu_seconds_total{mode!="idle"}[5m])
)
/
 count without(cpu, mode)(node_cpu_seconds_total{mode="idle"})

and calculate the proportion of nonidle CPU for all your machines at once.

Math
The math functions perform standard mathematical operations on instant vectors,
such as calculating absolute values or taking a logarithm. Each sample in the instant
vector is handled independently, and the metric name is removed in the return value.

abs
abs takes an instant vector and returns the absolute value for each of its values, which
is to say any negative numbers are changed to positive numbers.

The expression:

abs(process_open_fds - 15)

will return how far away each process’s open file descriptors count is from 15. Counts
of 5 and 25 would both return 10.

ln, log2, and log10
The functions ln, log2, and log10 take an instant vector, return the logarithm of
the values, and use different bases for the logarithm, Euler’s number e, 2, and 10,
respectively. ln is also known as the natural logarithm.

These functions can be used to get an idea of the different orders of magnitude of
numbers. For example, to calculate the number of 9s1 of successes an API endpoint
had over the past hour, you could do:

Math | 279

log10(
 sum without(instance)(rate(requests_failed_total[1h]))
 /
 sum without(instance)(rate(requests_total[1h]))
) * -1

If you want a logarithm to a different base, you can use the change
of base formula. For example, for a logarithm base three on the
instant vector x, you would use:

ln(x) / ln(3)

These can also be useful for graphing in certain circumstances where normal linear
graphs can’t suitably represent a large variance in values. However, it is usually best to
rely on the built-in logarithm graphing options in tools such as Grafana rather than
using these functions, as they tend to gracefully handle edge cases such as negative
logarithms returning NaN.

exp
The exp function provides the natural exponent, and is the inverse to the ln function.
For example:

exp(vector(1))

returns:

{} 2.718281828459045

which is Euler’s number, e.

sqrt
The sqrt function returns a square root of the values in an instant vector. For
example:

sqrt(vector(9))

will return:

{} 3

sqrt predates the exponent operator ^, so this is equivalent to:

vector(9) ^ 0.5

If you need other roots, you can use the same approach. For exam‐
ple, the cube or third root can be calculated with:

vector(9) ^ (1/3)

280 | Chapter 16: Functions

ceil and floor
ceil and floor allow you to round the values in an instant vector. ceil always
rounds up to the nearest integer, and floor always rounds down. For example:

ceil(vector(0.1))

will return:

{} 1

round
round rounds the values in an instant vector to the nearest integer. If you provide a
value that is exactly halfway between two integers, it is rounded up. That is to say
that:

round(vector(5.5))

will return:

{} 6

round is also one of the functions that you can optionally provide with an additional
argument. The additional argument is a scalar, and the values will be rounded to the
nearest multiple of this number:

round(vector(2446), 1000)

will return:

{} 2000

for example. This is equivalent to:

round(vector(2446) / 1000) * 1000

but easier for you to use and understand.

clamp, clamp_max, and clamp_min
Sometimes you will find that a metric returns spurious values well outside the normal
range, such as a gauge that you expect to be positive occasionally being massively
negative. clamp_max and clamp_min allow you to put upper and lower bounds,
respectively, on the values in an instant vector.

For example, if you didn’t believe that your processes could have fewer than 10 open
file descriptors, you could use:

clamp_min(process_open_fds, 10)

Math | 281

which would produce a result like:

{instance="localhost:9090",job="prometheus"} 46
{instance="localhost:9100",job="node"} 10

clamp enables you to put upper and lower bounds into a single query. On the same
data, the following query:

clamp(process_open_fds, 10, 20)

would produce a result like:

{instance="localhost:9090",job="prometheus"} 20
{instance="localhost:9100",job="node"} 10

sgn
sgn returns a vector with all sample values converted to their sign, defined as this: 1 if
the value is positive, –1 if value is negative, and 0 if the value is equal to zero.

sgn(vector(100))

will return:

{} 1

Trigonometric Functions
There are 12 trigonometric functions available. They work in radians:

• acos calculates the arccosine of the values.•
• acosh calculates the inverse hyperbolic cosine of the values.•
• asin calculates the arcsine of the values.•
• asinh calculates the inverse hyperbolic sine of the values.•
• atan calculates the arctangent of the values.•
• atanh calculates the inverse hyperbolic tangent of the values.•
• cos calculates the cosine of the values.•
• cosh calculates the hyperbolic cosine of the values.•
• sin calculates the sine of the values.•
• sinh calculates the hyperbolic sine of the values.•
• tan calculates the tangent of the values.•
• tanh calculates the hyperbolic tangent of the values.•

There are three additional functions that are useful for converting between degrees
and radians:

282 | Chapter 16: Functions

2 Midnight January 1st, 1970 UTC.

• deg converts values passed as radians to degrees.•
• pi returns pi.•
• rad converts values passed as degrees to radians.•

sin(vector(pi()/2))

returns:

{} 1

Time and Date
Prometheus offers you several functions dealing with time, most of which are conve‐
nience functions around time to save you from having to implement date-related
logic yourself. Prometheus works entirely in UTC, and has no notion of time zones.

time
The time function is the most basic time-related function. It returns the evaluation
time of the query as seconds since the Unix epoch2 as a scalar. For example:

time()

might return:

1652911202.529

If you were to use time with the query_range endpoint, then every result would be
different, as each step has a different evaluation time.

The Prometheus best practice is to expose the Unix time in seconds at which some‐
thing of interest happened, and not how long it has been since it happened. This is
more reliable, as it’s not susceptible to failure to update the metric. The time function
then lets you convert these to durations. For example, if you wanted to see how long
your processes have been running, you would use:

time() - process_start_time_seconds

which will return a result such as:

{instance="localhost:9090",job="prometheus"} 313.5699999332428
{instance="localhost:9100",job="node"} 322.25999999046326

Here both Node Exporter and Prometheus have been running for a bit over 5
minutes. If you had a batch job pushing the last time it succeeded to the Pushgateway,

Time and Date | 283

3 Minutes are floor(vector(time() / 60 % 60)), for example.

4 The default value of this argument is vector(time()).

as discussed in “Pushgateway” on page 76, you could find jobs that hadn’t succeeded
in the past hour with:

time() - my_job_last_success_seconds > 3600

minute, hour, day_of_week, day_of_month, day_of_year,
days_in_month, month, and year
time covers most use cases, but sometimes you will want to have logic based on the
clock or calendar. Converting to minutes and hours from time isn’t too difficult,3 but
beyond that you have to consider issues like leap days.

All of these functions return the given value for the query evaluation time as an
instant vector with one sample and no labels. As we write this it is currently 13:37 on
Saturday, November 5, 2022, in the UTC time zone. The outputs of these functions
when evaluated at this time are:

Expression Result

minute() {} 37

hour() {} 13

day_of_week() {} 6

day_of_month() {} 5

day_of_year() {} 309

days_in_month() {} 30

month() {} 11

year() {} 2022

day_of_week starts with 0 for Sunday, so the 6 here is Saturday. If you wanted to
check if today was the last day of the month, you could compare the output of
day_of_month to days_in_month.

You may be wondering why these functions don’t return scalars, as that’d seem more
convenient to work with. The answer is that these functions all take an optional
argument4 so that you can pass in instant vectors. For example, to see what year your
processes started in, you could use:

year(process_start_time_seconds)

284 | Chapter 16: Functions

5 As will the timestamps of samples if you provide a range vector selector to the query HTTP API.

which would produce a result such as:

{instance="localhost:9090",job="prometheus"} 2022
{instance="localhost:9100",job="node"} 2022

This could also be used to count how many processes were started this month:

sum(
 (year(process_start_time_seconds) == bool scalar(year()))
 *
 (month(process_start_time_seconds) == bool scalar(month()))
)

Here we are taking advantage of the fact that the multiplication operator acts like an
and operator when used on booleans with the value 1 for true and 0 for false.

timestamp
The timestamp function is different from the other time functions in that it looks
at the timestamp of the samples in an instant vector rather than the values. As was
mentioned in “Instant Vector” on page 237 and “query” on page 242, the timestamps
for samples returned from all operators, functions, the query_range HTTP API, and
query HTTP API when it returns an instant vector will be the query evaluation time.

However, the timestamp of samples in an instant vector from an instant vector
selector will be the actual timestamps.5 The timestamp function allows you to access
these. For example, you can see when the last scrape started for each target with:

timestamp(up)

This is because the default timestamp for data from a scrape is the time that the
scrape started. Similarly the timestamp for samples from recording rules, as covered
in Chapter 17, is the rule group execution time.

If you want to see raw data with samples for debugging, using a range vector selector
with the query HTTP API is best, but timestamp does have some uses. For example:

node_time_seconds - timestamp(node_time_seconds)

would return the difference between when the scrape of the Node Exporter was
started by Prometheus and what time the Node Exporter thought was the current
time. While this isn’t 100% accurate (it will vary with machine load), it will allow you
to know if time is out of sync by a few seconds without needing a 1-second scrape
interval.

Time and Date | 285

6 In reality, as node_disk_read_bytes_total is a counter, you would use rate first and then label_replace.

Labels
In an ideal world the label names and label values used by different parts of your sys‐
tem would be consistent; for example, you wouldn’t have customer in one place and
cust in another. While it is best to resolve such inconsistencies in the source code, or
failing that with metric_relabel_configs as discussed in “metric_relabel_configs”
on page 164, this is not always possible. Thus the two label functions allow you to
change labels.

label_replace
label_replace allows you to do regular expression substitution on label values. For
example, if you needed the device label on node_disk_read_bytes_total to be dev
instead for vector matching to work as you needed, you could do:6

label_replace(node_disk_read_bytes_total, "dev", "${1}", "device", "(.*)")

which would return a result like:

node_disk_read_bytes_total{dev="sda",device="sda",instance="localhost:9100",
 job="node"} 4766305792

Unlike most functions, label_replace does not remove the metric name, as it is pre‐
sumed that you are doing something unusual if you have to resort to label_replace,
and removing the metric name could make that harder for you.

The arguments to label_replace are the instant vector input, the name of the output
label, the replacement, the name of the source label, and the regular expression.
label_replace is similar to the replace relabeling action, but you can only use one
label as a source label. If the regular expression does not match for a given sample,
then that sample is returned unchanged.

label_join
label_join allows you to join label values, similarly to how source_labels is han‐
dled in relabeling. For example, if you wanted to join the job and instance labels
into a new label, you could do:

label_join(node_disk_read_bytes_total, "combined", "-", "instance", "job")

which would return a result such as:

node_disk_read_bytes_total{combined="localhost:9100-node",device="sda",
 instance="localhost:9100",job="node"} 4766359040

286 | Chapter 16: Functions

As with label_replace, label_join does not remove the metric name. The argu‐
ments are the instant vector input, the name of the output label, the separator, and
then zero or more label names.

You could combine label_join with label_replace to provide the full functional‐
ity of the replace relabel action, but at that point you should seriously consider
metric_relabel_configs or fixing the source metrics instead.

Missing Series, absent, and absent_over_time
As mentioned in “Many-to-Many and Logical Operators” on page 271, the absent
function plays the role of a not operator. If you pass a nonempty instant vector as
the absent argument, it returns an empty instant vector. If you pass an empty instant
vector, it returns an instant vector with one sample and a value of 1.

You might expect that this sample has no labels, since there are no labels to work
with. However, absent is a little smarter than that, and if the argument is an instant
vector selector, it uses the labels from any equality matchers present.

Expression Result

absent(up) empty instant vector

absent(up{job="prometheus"}) empty instant vector

absent(up{job="missing"}) {job="missing"} 1

absent(up{job=~"missing"}) {} 1

absent(non_existent) {} 1

absent(non_existent{job="foo",env="dev"}) {job="foo",env="dev"} 1

absent(non_existent{job="foo",env="dev"} * 0) {} 1

absent is useful for detecting if an entire job has gone missing from service discovery.
Alerting on up == 0 doesn’t work too well when you have no targets to produce up
metrics! Even when using static_configs it can be wise to have such an alert in case
generation of your prometheus.yml goes awry.

If you want instead to alert on specific metrics that are missing from a target, you can
use unless, which was covered in “unless operator” on page 273.

absent has a range variant, absent_over_time. It returns an empty vector if the
range vector passed to it has any elements, and a one-element vector with the value 1
if the range vector passed has no elements.

This is useful for alerting on when no time series exist for a given metric name and
label combination for a certain amount of time.

Missing Series, absent, and absent_over_time | 287

The following query:

absent_over_time(up{job="myjob"}[1h])

would mean that the job myjob hasn’t got any target for at least one hour.

Sorting with sort and sort_desc
PromQL generally does not specify the order of elements within an instant vector, so
it can change from evaluation to evaluation. But if you use sort or sort_desc as the
last thing that is evaluated in a PromQL expression, then the instant vector will be
sorted by value. For example:

sort(node_filesystem_size_bytes)

might return:

node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/lock"} 5238784
node_filesystem_free_bytes{device="/dev/sda1",fstype="vfat",
 instance="localhost:9100",job="node",mountpoint="/boot/efi"} 70300672
node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run"} 817094656
node_filesystem_free_bytes{device="tmpfs",fstype="tmpfs",
 instance="localhost:9100",job="node",mountpoint="/run/user/1000"} 826912768
node_filesystem_free_bytes{device="/dev/sda5",fstype="ext4",
 instance="localhost:9100",job="node",mountpoint="/"} 30791843840

The effect of these functions is cosmetic, but may save you some effort in reporting
scripts. NaNs are always sorted to the end, so sort and sort_desc are not quite the
reverse of each other.

The instant vectors returned from the topk and bottomk aggrega‐
tors already come with their samples sorted within the aggregation
groups.

Histograms with histogram_quantile
The histogram_quantile function was already touched on in “Histogram” on page
233. It is internally a bit like an aggregator, since it groups samples together like
a without(le) clause would and then calculates a quantile from their values. For
example:

histogram_quantile(
 0.90,
 rate(prometheus_tsdb_compaction_duration_seconds_bucket[1d])
)

288 | Chapter 16: Functions

would calculate the 0.9 quantile (also known as the 90th percentile) latency of Prome‐
theus’s compaction latency over the past day. Values outside of the range from zero to
one do not make sense for quantiles, and will result in infinities.

As discussed in “Cumulative Histograms” on page 54, the values in the buckets must
be cumulative and there must be a +Inf bucket.

You must always use rate first for buckets exposed by Prometheus’s histogram metric
type, as shown in “The Histogram” on page 52, as histogram_quantile needs gauges
to work on. But there are a very small number of exporters that expose histogram-
like time series where the buckets are gauges rather than counters. If you come across
one of these, it is OK to use histogram_quantile on them directly.

Counters
Counters include not just the counter metric, but also the _sum, _count, and _bucket
time series from summary and histogram metrics. Counters can only go up. When
an application starts or restarts, counters will initialize to 0, and the counter functions
take this into account automatically.

The values of counters are not particularly useful on their own; you will almost
always want to convert them to gauges using one of the counter-related functions.

Functions working on counters all take a range vector as an argument and return an
instant vector. Each of the time series in the range vector is processed individually,
and returns at most one sample. If there is only one sample for one of your time
series within the range you provide, you will get no output for it when using these
functions.

rate
The rate function is the primary function you will use with counters, and indeed
likely the main function you will use from PromQL. rate returns how fast a counter
is increasing per second for each time series in the range vector passed to it. You have
already seen many examples of rate, such as:

rate(process_cpu_seconds_total[1m])

which returns a result like:

{instance="localhost:9090",job="prometheus"} 0.0018000000000000683
{instance="localhost:9100",job="node"} 0.005

rate automatically handles counter resets, and any decrease in a counter is consid‐
ered to be a counter reset. So, for example, if you had a time series that had values
[5,10,4,6], it would be treated as though it was [5,10,14,16]. rate presumes that
the targets it is monitoring are relatively long-lived compared to a scrape interval, as

Counters | 289

7 Five-minute rate is a colloquial way to say a rate function on a range vector with a 5-minute range, such as
rate(x_total[5m]).

it cannot detect multiple resets in a short period of time. If you have targets that are
expected to regularly live for less than a handful of scrape intervals, you may wish to
consider a log-based monitoring solution instead.

rate has to handle scenarios like time series appearing and disappearing, such as if
one of your instances started up and then later crashed. For example, if one of your
instances had a counter that was incrementing at a rate of around 10 per second, but
was only running for half an hour, then a rate(x_total[1h]) would return a result
of around 5 per second.

Values are rarely exact. Since scrapes for different targets happen at different times,
there can be jitter over time, the steps of a query_range call will rarely align perfectly
with scrapes, and scrapes are expected to fail every now and then. In the face of such
challenges, rate is designed to be robust, and the result of rate is intended to be
correct when looked at on average over time.

rate is not intended to catch every single increment, as it is expected that increments
will be lost, such as if an instance dies between scrapes. This may cause artifacts if
you have very slow-moving counters, such as if they’re only incremented a few times
an hour. rate can also only deal with changes in counters, because if a counter time
series appears with a value of 100, rate has no idea if those increments were just now
or if the target has been running for years and has only just started being returned by
service discovery to be scraped.

It is recommended to use a range for your range vector that is at least four times your
scrape interval. This will ensure that you always have two samples to work with even
if scrapes are slow, ingestion is slow, and there has been a single scrape failure. Such
issues are a fact of life in real-world systems, so it is important to be resilient. For
example, for a 1-minute scrape interval you might use a 4-minute rate, but usually
that is rounded up to a 5-minute rate.7

Generally you should aim to have the same range used on all your rate functions
within a Prometheus for the sake of sanity, since outputs from rates over different
ranges are not comparable and tend to be hard to keep track of.

You may wonder with all these implementation details and caveats if rate could be
changed to be simpler. There are several ways you can approach this problem, but
at the end of the day they all have both advantages and disadvantages. If you fix one
apparent problem, you will cause a different problem to pop up. The rate function
is a good balance across all of these concerns, and provides a robust solution suitable
for operational monitoring. If you run into a situation where any rate-like function

290 | Chapter 16: Functions

8 If the step for a query_range is greater than the scrape interval, you would skip data when using irate.

isn’t giving you quite what you need, we would suggest continuing your debugging
based on logs data, which does not have these particular concerns and can produce
exact answers with the trade-off of a bigger price.

increase
increase is merely syntactic sugar on top of rate. increase(x_total[5m]) is exactly
equivalent to rate(x_total[5m]) * 300, which is to say the result of rate multiplied
by the range of the range vector. The logic is otherwise identical.

Seconds are the base unit for Prometheus, so you should use increase only when
displaying values to humans. Within your recording rules and alerts it is best to stick
to rate for consistency.

One of the outcomes of the robustness of rate and increase is that they can return
noninteger results when given integer inputs. Consider that you had the following
data points for a time series:

21 at 2s
22 at 7s
24 at 12s

and you were to calculate increase(x_total[15s]) with a query time of 15 seconds.
The increase here is 3 over a period of 10 seconds, so you might expect a result of
3. However, the rate was taken over a 15-second period, so to avoid underestimating
the correct answer, the 10 seconds of data you have is extrapolated out to 15 seconds,
producing a result of 4.5 for the increase.

rate and increase presume that a time series continues beyond the bound of the
range if the first/last samples is within 110% of the average interval of the data. If this
is not the case, it is presumed the time series exists for 50% of an interval beyond the
samples you have, but not with the value going below zero.

irate
irate is like rate in that it returns the per-second rate at which a counter is increas‐
ing. The algorithm it uses is much simpler though; it only looks at the last two
samples of the range vector it is passed. This has the advantage that it is much more
responsive to changes and you don’t have to care so much about the relationship
between the vector’s range and the scrape interval, but comes with the corresponding
disadvantage that as it is only looking at two samples, it can only be safely used in
graphs that are fully zoomed in.8 Figure 16-1 shows a comparison of a 5-minute rate
against an irate.

Counters | 291

9 irate is short for instant rate, though that the function is called irate still brings Brian minor amusement.

10 changes(process_start_time_seconds[1h]) is a better way to count restarts, as timestamps are gauges.

Due to the lack of averaging that irate brings, the graphs can be more volatile9 and
harder to read. It is not advisable to use irate in alerts due to it being sensitive to
brief spikes and dips; use rate instead.

Figure 16-1. CPU usage of a Node Exporter viewed with rate and irate

resets
You may sometimes suspect that a counter is resetting more often than it should be.
The resets function returns how many times each time series in a range vector has
reset. For example, the expression:

resets(process_cpu_seconds_total[1h])

will indicate how many times the CPU time of the process has reset in the past hour.
This should be the number of times the process has restarted,10 but if you had a bug
that was causing it to go backward, the value would be higher.

resets is intended as a debugging tool for counters, since counters might reset too
often and nonmonotonic counters will cause artifacts in the form of large spikes in
your graphs. However, some users have found occasional uses for it when they want
to know how many times a gauge has been seen to decrease.

292 | Chapter 16: Functions

https://oreil.ly/EHfI0

11 Although there have been cases, such as in Prometheus bug report 289, where a cloud provider’s kernel was
providing bad metrics.

12 Also known as simple linear regression.

Changing Gauges
Unlike counters, the values of gauges are useful on their own and you can use binary
operators and aggregators directly on them. But sometimes you will want to analyze
the history of a gauge, and there are several functions for this purpose.

As with the counter functions, these functions also take a range vector and return an
instant vector with at most one sample for each time series in your input.

changes
Some gauges are expected to change very rarely. For example, the start time of a
process does not change in the lifetime of a process.11 The changes function allows
you to count how many times a gauge has changed value, so:

changes(process_start_time_seconds[1h])

will tell you how many times your process has restarted in the past hour. If you aggre‐
gated this across entire applications, it would allow you to spot if your applications
were in a slow crash loop.

Due to the fundamental nature of metrics sampling, Prometheus may not scrape
often enough to see every possible change. However, if a process is restarting that
frequently, you will still detect it either via this method or by up being 0.

You can use changes beyond process_start_time_seconds for other situations
where the fact that a gauge has changed is interesting to you.

deriv
Often you will want to know how quickly a gauge is changing; for example, how
quickly a backlog is increasing if it is increasing at all. This would allow you to alert
on not only the backlog being higher than you’d like but also that it has not already
started to go down.

You could do x - x offset 1h, but this only uses two samples, and thus lacks
robustness because it is susceptible to individual outlier values. The deriv function
uses least-squares regression12 to estimate the slope of each of the time series in a range
vector. For example:

deriv(process_resident_memory_bytes[1h])

Changing Gauges | 293

https://oreil.ly/HW1Kl

would calculate how fast resident memory is changing per second based on samples
from the past hour.

predict_linear
predict_linear goes a step further than deriv and predicts what the value of a gauge
will be in the future based on data in the provided range. For example:

predict_linear(node_filesystem_free_bytes{job="node"}[1h], 4 * 3600)

would predict how much free space would be left on each filesystem in four hours
based on the past hour of samples. This expression is roughly equivalent to:

 deriv(node_filesystem_free_bytes{job="node"}[1h]) * 4 * 3600
+
 node_filesystem_free_bytes{job="node"}

but predict_linear is slightly more accurate because it uses the intercept from the
regression.

predict_linear is useful for resource limit alerts, where static thresholds such as
1 GB free or percentage thresholds such as 10% free tend to have false positives and
false negatives depending on whether you are working with relatively large or small
filesystems. A 1 GB threshold on a 1 TB filesystem would alert you too late, but would
also alert you too early on a 2 GB filesystem. predict_linear works better across all
sizes.

It can take some tweaking to choose good values for the range and to determine how
far to predict forward. If there was a regular sawtooth pattern in the data, you would
want to ensure that the range was long enough not to extrapolate the upward part of
the cycle out indefinitely.

delta
delta is similar to increase, but without the counter reset handling. This function
should be avoided as it can be overly affected by single outlier values. You should use
deriv instead, or x - x offset 1h if you really want to compare with the value a
given time ago.

idelta
idelta takes the last two samples in a range and returns their difference. idelta is
intended for advanced use cases. For example, the way rate and irate work is not
to everyone’s personal tastes, so using idelta and recording rules allows users to
implement what they’d like without polluting PromQL with various subtle variations
of the rate function.

294 | Chapter 16: Functions

13 It is possible this function is misnamed; see Prometheus issue #2458.

holt_winters
The holt_winters function13 implements Holt-Winters double exponential smoothing.
Gauges can at times be very spiky and hard to read so some smoothing is often good.
At the simplest you could use avg_over_time, but you might want something more
sophisticated.

This function works through the samples for a time series, tracks the smoothed value
so far, and provides an estimate of the trend in the data. Each new sample is taken
into account based on the smoothing factor, which indicates how much old data is
important relative to new data, and the trend factor, which controls how important
the trend is. For example:

holt_winters(process_resident_memory_bytes[1h], 0.1, 0.5)

would smooth memory usage with a smoothing factor of 0.1 and a trend factor of
0.5. Both factors must be between 0 and 1.

Aggregation Over Time
Aggregators such as avg work across the samples in an instant vector. There is also
a set of functions such as avg_over_time that apply the same logic, but across the
values of a time series in a range vector. These functions are:

• sum_over_time•
• count_over_time•
• avg_over_time•
• stddev_over_time•
• stdvar_over_time•
• min_over_time•
• max_over_time•
• quantile_over_time•

Aggregation Over Time | 295

https://oreil.ly/WTR0v

14 Though as count_over_time and present_over_time ignore values, they can be useful for debugging any
type of metric.

Two extra functions are not directly linked to aggregators:

• present_over_time acts like the group aggregator, returns the value 1 for any•
series matched by the range selector.

• last_over_time returns the last value for any series matched by the range•
selector.

For example, to see the peak memory usage that Prometheus saw for a process, you
could use:

max_over_time(process_resident_memory_bytes[1h])

and even go a step further and calculate that across the application:

max without(instance)(max_over_time(process_resident_memory_bytes[1h]))

These functions only work from the values of the samples; there is no weighting
based on the length of time between samples or any other logic relating to time‐
stamps. This means that if you change the scrape interval, for example, there will be
a bias toward the time period with the more frequent scrapes for functions such as
avg_over_time and quantile_over_time. Similarly, if there are failed scrapes for a
period of time, that period will be less represented in your result.

These functions are used with gauges.14 If you want to take an avg_over_time of a
rate, this isn’t possible as that function returns instant rather than range vectors.
However, rate already calculates an average over time, so you can increase the range
on the rate. For example, instead of trying to do:

avg_over_time(rate(x_total[5m])[1h])

which will produce a parse error, you can instead do:

rate(x_total[1h])

How to use the instant vector output of functions as the input of functions that
require range vectors is covered in the next chapter on recording rules.

296 | Chapter 16: Functions

CHAPTER 17

Recording Rules

The HTTP API is not the only way in which you can access PromQL. You can also
use recording rules to have Prometheus evaluate PromQL expressions regularly and
ingest their results. This is useful to speed up your dashboards, provide aggregated
results for use elsewhere, and compose range vector functions. Other monitoring
systems might call their equivalent feature standing queries or continuous queries.
Alerting rules (covered in Chapter 18) are also a variant of recording rules. This
chapter will show you how and when to use recording rules.

Using Recording Rules
Recording rules go in separate files from your prometheus.yml, which are known
as rule files. As with prometheus.yml, rule files also use the YAML format. You can
specify where your rule files are located using the rule_files top-level field in
your prometheus.yml. For example, Example 17-1 loads a rule file called rules.yml, in
addition to scraping two targets.

Example 17-1. prometheus.yml scraping two targets and loading a rule file

global:
 scrape_interval: 10s
 evaluation_interval: 10s
rule_files:
 - rules.yml
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090
 - job_name: node
 static_configs:

297

1 Zero groups or zero rules in group is technically possible, but serves no purpose.

 - targets:
 - localhost:9100

Similar to the files field of file_sd_configs, as covered in “File” on page 142,
rule_files takes a list of paths, and you can use globs in the filename. Unlike file
service discovery, rule_files does not use inotify nor does it automatically pick up
changes you make to rule files. Instead, you must either restart Prometheus or reload
its configuration.

To ask Prometheus to reload its configuration, you can send it the SIGHUP signal
using a command like:

kill -HUP <pid>

where pid is the process ID of Prometheus. You can also send an HTTP POST to
the /-/reload endpoint of Prometheus, but for security reasons this requires that
the --web.enable-lifecycle flag is specified. If the reload fails, Prometheus will
log this, and you will see the prometheus_config_last_reload_successful metric
change to 0.

To detect bad configuration files or rules in advance, you can use the promtool check
config command to check your prometheus.yml. This will also check all the rule files
referenced by the prometheus.yml. You might have this as a pre-submit check or unit
test that is applied before the configuration file is rolled out. If you want to check the
syntax of individual rule files, you can use promtool check rules.

Rule files themselves consist of zero1 or more groups of rules. Example 17-2 shows a
rule file.

Example 17-2. rules.yml with one group containing two rules

groups:
 - name: example
 rules:
 - record: job:process_cpu_seconds:rate5m
 expr: sum without(instance)(rate(process_cpu_seconds_total[5m]))
 - record: job:process_open_fds:max
 expr: max without(instance)(process_open_fds)

You will notice that the group has a name. This must be unique within a rule file,
and is used in the Prometheus UI and metrics. expr is the PromQL expression to be
evaluated and output into the metric name specified by record.

298 | Chapter 17: Recording Rules

2 However, labels is used in virtually all alerting rules.

It is possible to specify an evaluation_interval for a group, but as with
scrape_interval you should aim for only one interval in a Prometheus for sanity.
You can also specify a set of labels in the labels field to be added to the output, but
this is rarely appropriate for recording rules.2

Each rule in a group is evaluated in turn, and the output of your first rule is ingested
into the time series database before your second rule is run. While rules within a
group are executed sequentially, different groups will be run at different times just as
different targets are scraped at different times. This is to spread out the load on your
Prometheus.

Once your rules are loaded and running, you can view them on the Rules status page
at http://localhost:9090/rules, as shown in Figure 17-1.

Figure 17-1. Rules status page of Prometheus

In addition to listing your rules, how long each group as a whole took to last
evaluate and how long each rule took to execute are also displayed. You can use
this to find expensive rules that may need adjustment or reconsideration. The
prometheus_rule_group_last_duration_seconds metric will also tell you how long
the last evaluation of each group took, which you can use to determine if there have
been recent changes in the cost of your rules. There is no metric with the duration
of individual rules as that could cause cardinality issues. In this case, the rules are
taking less than a millisecond, which is well under the evaluation interval, so there is
nothing to worry about.

Using Recording Rules | 299

3 The > here is one of the ways to have multiline strings in YAML.

There is no API to upload or change rules. As with Prometheus
configuration generally, files are intended to be a base upon which
you could build such a system on top of if you so wish.

When to Use Recording Rules
There are several cases when you might want to use recording rules. Recording
rules are mainly used to aggregate metrics in order to make your queries more
efficient. This is common for dashboards, federation, and before storing the metrics
in long-term storage. You might also use recording rules to compose range vector
functions, and on occasion offer APIs of metrics to other teams.

Reducing Cardinality
If you have an expression such as:

sum without(instance)(rate(process_cpu_seconds_total{job="node"}[5m]))

in a dashboard, you will find you get a prompt response from Prometheus if you have
a few targets. As the number of targets grows to the hundreds and thousands, you will
find that the response time for a query_range is not as snappy.

Rather than asking PromQL to access and process thousands of time series for the
entire range of each graph on your dashboard, you can precompute this value using a
rule group using something like:3

groups:
 - name: node
 rules:
 - record: job:process_cpu_seconds:rate5m
 expr: >
 sum without(instance)(
 rate(process_cpu_seconds_total{job="node"}[5m])
)

which will output to a metric called job:process_cpu_seconds:rate5m.

Now you only need to fetch that one time series when your dashboard is being
rendered. The same applies even if you have instrumentation labels in play, as you
are reducing the number of time series to process by a factor of how many instances
you have. Effectively, you are trading an ongoing resource cost against much lower
latency and resource cost for your queries. Due to this trade-off it is not generally

300 | Chapter 17: Recording Rules

4 Performance-wise, many small scrapes staggered over time are better than the samples from all those scrapes
being combined into one massive scrape.

5 This can be done via federation, remote write relabeling, or you could delete time series you are no longer
interested in via the API. As always, be careful when deleting metrics.

6 Prior to Prometheus 2.0 this approach was not practical. There was no notion of rule groups, so you couldn’t
guarantee that one rule would only run after another rule had completed.

wise to have rules that use long vector ranges, as such queries tend to be expensive,
and running them regularly can cause performance problems.

You should try to put all rules for one job in one group. That way they will have the
same timestamp and avoid artifacts when you do further math on them. All recording
rules in a group have the same query evaluation time for an execution, and all output
samples will also have that timestamp.

You will find aggregation rules like these are useful beyond making your dashboards
faster. When using federation, as discussed in “Going Global with Federation” on
page 360, you will always want to pull aggregated metrics, as otherwise you would be
pulling in large swathes of instance-level metrics. At that point, the Prometheus using
federation would be better off scraping the targets directly itself from a performance
standpoint.4

Similar logic applies if you want to save some metrics on a long-term basis. When
doing capacity planning over months or years of data, details of individual instances
are not relevant. By keeping primarily aggregated metrics long term, you can save a
lot of resources with little loss in useful information.5

You will often have aggregation rules based off the same metric but with different sets
of labels. Rather than calculating each aggregation individually, you can be efficient
by having one rule use the output of another. For example:

groups:
 - name: node
 rules:
 - record: job_device:node_disk_read_bytes:rate5m
 expr: >
 sum without(instance)(
 rate(node_disk_read_bytes_total{job="node"}[5m])
)
 - record: job:node_disk_read_bytes:rate5m
 expr: >
 sum without(device)(
 job_device:node_disk_read_bytes:rate5m{job="node"}
)

For this to work properly, the rules in a given hierarchy must be in order within a
single rule group.6 It is generally best to explicitly specify the job that your rules apply
to in your selectors, so that your groups don’t step on each others’ toes.

When to Use Recording Rules | 301

Composing Range Vector Functions
As mentioned in “Aggregation Over Time” on page 295, you cannot use range vector
functions on the output of functions that produce instant vectors. For example,
max_over_time(sum without(instance)(rate(x_total[5m]))[1h]) is not possible,
and will produce a parse error. While PromQL features subqueries, you can use
recording rules to the same effect:

groups:
 - name: j_job_rules
 rules:
 - record: job:x:rate5m
 expr: >
 sum without(instance)(
 rate(x_total{job="j"}[5m])
)
 - record: job:x:max_over_time1h_rate5m
 expr: max_over_time(job:x:rate5m{job="j"}[1h])

This approach can be used with any range vector function, including not only the
_over_time functions but also predict_linear, deriv, and holt_winters.

However, this technique should not be used with rate, irate, or increase, as an
effective expression of rate(sum(x_total)[5m]) would have massive spikes every
time one of its constituent counters reset or disappeared.

Always rate and then sum, never sum and then rate.

You are not required to have the outer function in a recording rule. With the preced‐
ing example it might make more sense to have the max_over_time performed as you
need it. For example, the primary use for this particular example would be capacity
planning, as you need to plan for peak rather than average traffic. Since capacity
planning is often performed once a month or once a quarter, there is not much point
in you evaluating the max_over_time at least once a minute rather than running the
query just when you need it. Functions over longer time ranges can also get expensive
due to the amount of data they have to process. Be careful with ranges over an hour
and particularly across many time series.

Rules for APIs
Usually the Prometheus servers you run are going to be used entirely by you and your
team. But you may run into situations where other teams wish to pull metrics from
your Prometheus. If their usage is just informational or depends on metrics that are

302 | Chapter 17: Recording Rules

7 Brian has heard numbers around this mark from multiple monitoring systems.

unlikely to change, that’s generally OK, because if you break things on them it’s not
the end of the world. But if the metrics are being used as part of automated systems
or processes outside of your control, it may be a good idea to create metrics just for
other teams to consume as a form of public API. Then if you need to change the
labels or rules inside your Prometheus you can do so, while still ensuring that the
metrics the other team depends on keep the same semantics.

The naming of such metrics doesn’t tend to follow the normal naming conventions,
and you will typically put the name of the consuming team either in the metric name
or a label.

Such uses of rules are quite rare. If another team’s use of your Prometheus is getting
to the stage where it is placing a nontrivial maintenance burden on you, you might
want to ask them to run their own Prometheus for the metrics they need.

How Not to Use Rules
We have noticed a few common antipatterns with recording rules that we would like
to help you avoid.

The first of these is rules that undo the benefits of labels. For example:

 - record: job_device:node_disk_read_bytes_sda:rate5m
 expr: >
 sum without(instance)(
 rate(node_disk_read_bytes_total{job="node",device="sda"}[5m])
)
 - record: job_device:node_disk_read_bytes_sdb:rate5m
 expr: >
 sum without(instance)(
 rate(node_disk_read_bytes_total{job="node",device="sdb"}[5m])
)

This would require you to have a rule per potential device label, and you cannot
easily aggregate across these metrics. This basically defeats the entire purpose of
labels, one of the most powerful features of Prometheus. You should avoid moving
label values into metric names, and if you want to limit what time series are returned
based on a label value, use a matcher at query time. Similarly do not move the job
label into the metric name.

Another antipattern is preaggregating every metric an application exposes. While
it is true that aggregation is a good idea to reduce cardinality for performance, it
is counterproductive to overdo it. In a metrics-based monitoring system it is not
uncommon to never use over 90% of your metrics,7 so aggregating everything by
default is a waste of resources and would require unnecessary maintenance as metrics

When to Use Recording Rules | 303

are added and removed over time. Instead, you should add aggregation as you need
it. Those other 90% of metrics are still accessible for when you end up debugging
some weird issue in the bowels of your system, and the only cost of not aggregating
them is that your queries on them will take slightly longer.

The primary purpose of recording rules is to reduce cardinality, so there is often
not much point in having recording rules that still have an instance label in their
output. Querying ten time series at query time isn’t notably more expensive than
querying one. If you have metrics with high cardinality within a target, recording
rules with instance labels can make sense, though you should also consider if those
instrumentation labels should be removed on cardinality grounds.

With rules such as:

 - record: job:x:max_over_time1h_rate5m
 expr: max_over_time(job:x:rate5m{job="j"}[1h])

from the preceding section, you might be tempted to change their evaluation_inter
val to an hour in order to save resources. This is not a good idea for three reasons.
First, as the input metric came from a recording rule that already reduced cardinality,
any resource savings will likely be tiny in the grand scheme of things. Second,
Prometheus only guarantees that the rule will be executed once an hour, not when in
the hour it will be executed. As you likely want results around the start of the hour,
this, combined with staleness handling, will not work out. Third, for the sake of your
sanity, you should aim for one interval inside your Prometheus servers.

The final pattern we would advise you to avoid is using recording rules to fix poor
metric names and labels. This pattern loses the original timestamps of the data, and
makes it harder to figure out where a metric came from and what it means. First,
you should try improving the metrics at their source, and if that is not possible for
technical or political reasons, consider whether using metric_relabel_configs, as
described in “metric_relabel_configs” on page 164, to improve them is worth the
downsides of them differing from what everyone else expects them to be named.

Unfortunately, there will always be cases where systems expose metrics that are too
far outside the Prometheus way of doing things, and you have no choice but to fix
them up however you can.

Naming of Recording Rules
By using a good convention for naming recording rules, you can not only tell at a
glance what a given recording rule metric name means, but it will also be easier to
share your rules with others due to a shared vocabulary.

As mentioned in “What Should I Name My Metrics?” on page 60, colons are valid
characters to have in metric names but are to be avoided in instrumentation. The

304 | Chapter 17: Recording Rules

reason for this is so the user can take advantage of them to add your own structure in
recording rules. The convention we use here balances precision and succinctness and
comes from years of experience.

The way this convention works is to have your metric names contain the labels that
are in play, followed by the metric name, followed by the operations that have been
performed on the metric. These three sections are separated by colons, so you will
always have either zero or two colons in a metric name. For example, given the metric
name:

job_device:node_disk_read_bytes:rate5m

We can tell that it has job and device labels, the metric it is based off
is node_disk_read_bytes, and it is a counter that rate(node_disk_read_bytes_
total[5m]) was applied to. These parts are the level, metric, and operations:

level
The level indicates the aggregation level of the metric by the labels it has. This
will always include the instrumentation labels (if they have not been aggregated
away yet), the job label that should be present, and any other target labels that are
relevant. Which target labels to include depends on context. If you have an env
label across all your targets that doesn’t affect your rules, then there’s no need to
bloat your metric names with it. But if a job was broken up by a shard label, you
should probably include it.

metric
The metric is just that—the metric or time series name. It’s normal to remove
the _total on counters to make things more succinct, but otherwise this should
be the exact metric name. The benefits of keeping the metric name is that it is
then easy to search your code base for that metric name, and vice versa if you are
looking at code to find if the metric has been aggregated. For ratios you would
use foo_per_bar, but there’s a special rule for dealing with _sum and _count
ratios.

operations
The operations are a list of functions and aggregators that have been applied
to the metric, the most recent first. If you have two sum or max operations, you
only need to list one, as a sum of a sum is still a sum. Since sum is the default
aggregation, you generally don’t need to list it. But if you have no other operation
to use, or haven’t applied any operations yet, sum is a good default. Depending on
what operations you plan on applying at other levels, min and max can make sense
for a base metric name. The operation you should use for division is ratio.

To take some examples, if you had a foo_total counter with a bar instrumentation
label, then aggregating away the instance label would look like:

Naming of Recording Rules | 305

8 Arguably, you could remove the _bytes here as it cancels out, but that might make it harder to find the
original metrics in the source code.

- record: job_bar:foo:rate5m
 expr: sum without(instance)(rate(foo_total{job="j"}[5m]))

Going from there, to aggregate away the bar label would look like:

- record: job:foo:rate5m
 expr: sum without(bar)(job_bar:foo:rate5m{job="j"})

You can start to see some of the advantages of this approach. It is clear from inspec‐
tion that the label handling is as expected here, as the input time series had job_bar
as the level, bar was removed using a without clause, and the output had job as the
level. In more complex rules and hierarchies this can be helpful to spot mistakes. For
example, the rule:

- record: job:foo_per_bar:ratio_rate5m
 expr: >
 (
 job:foo:rate5m{job="j"}
 /
 job:bar:rate10m{job="j"}
)

seems to be following the naming scheme for ratios, but there is a mismatch between
the rate5m and the rate10m, which you should notice and realize that this expression
and the resulting recording rule don’t make sense. A correct ratio might look like:

- record: job_mountpoint:node_filesystem_avail_bytes_per_
 node_filesystem_size_bytes:ratio
 expr: >
 (
 job_mountpoint:node_filesystem_avail_bytes:sum{job="node"}
 /
 job_mountpoint:node_filesystem_size_bytes:sum{job="node"}
)

Here you can see that the numerator and denominator have the same level and opera‐
tions, which are propagated to the output metric name.8 Here the sum is removed, as
it doesn’t tell you anything. This would not be the case if there was a rate5m operation
in the input metrics.

Using the preceding notation for average event sizes would be a bit wordy, so instead
the metric name is preserved and mean5m is used as the output operation as it is based
on a rate5m and is thus a mean over 5 minutes:

306 | Chapter 17: Recording Rules

- record: job_instance:go_gc_duration_seconds:mean5m
 expr: >
 (
 job_instance:go_gc_duration_seconds_sum:rate5m{job="prometheus"}
 /
 job_instance:go_gc_duration_seconds_count:rate5m{job="prometheus"}
)

If you later saw the rule:

- record: job:go_gc_duration_seconds:mean5m
 expr:
 avg without(instance)(
 job_instance:go_gc_duration_seconds:mean5m{job="prometheus"}
)

it would be immediately obvious that this is attempting to take an average of an
average, which doesn’t make sense. The correct aggregation would be:

- record: job:go_gc_duration_seconds:mean5m
 expr:
 (
 sum without(instance)(
 job_instance:go_gc_duration_seconds_sum:rate5m{job="prometheus"})
)
 /
 sum without(instance)(
 job_instance:go_gc_duration_seconds_count:rate5m{job="prometheus"})
)
)

You should sum to aggregate, and only perform division for averaging at the last step
of your calculation.

While the preceding cases are straightforward, like metric naming in general, once
you get off the beaten track, recording rule naming can be more of an art than a
science. You should endeavor to ensure that your recording rule names are clear in
what their semantics and labels are, while also attempting to make it easy to tie back
recording rule names to the code that produced the original metrics.

Aside from the very rare exception (see “Rules for APIs” on page 302), metric names
should indicate the identity of a metric name so that you can know what it is. Metric
names should not be used as a way to store annotations for policy.

Naming of Recording Rules | 307

For example, you should not feel tempted to add :federate or :longterm or similar
to metric names to indicate that you want such and such a metric transferred to
another system. This bloats metric names, and will cause problems when your policy
changes. Instead, define and implement your policy via matchers when extracting the
data, such as, say, pulling all metric names matching job:.*, rather than trying to
micro-optimize which exact metrics will and won’t be fetched. By the time a metric
has been through a recording rule, it has likely been aggregated sufficiently that its
cardinality is negligible, and thus it is probably not worth your time to worry about
the resource costs downstream.

Now that you know how to use recording rules, the next chapter will look at alerting
rules. Alerting rules also live in rule groups, and have a similar syntax.

308 | Chapter 17: Recording Rules

1 Hopefully when there’s a true emergency.

PART V

Alerting

If you want to be woken up at 3 a.m. by your monitoring system,1 these are the
chapters for you.

Building on the previous chapter, Chapter 18 covers alerting rules in Prometheus,
which offer you the ability to alert on far more than simple thresholds.

Once you have alerts firing in Prometheus, the Alertmanager converts those into
notifications while attempting to group and throttle notifications to increase the
value of each notification, as explained in Chapter 19.

CHAPTER 18

Alerting

Back in “What Is Monitoring?” on page 4 we stated that alerting was one of the
components of monitoring, allowing you to notify a human when there is a problem.
Prometheus allows you to define conditions in the form of PromQL expressions that
are continuously evaluated, and any resulting time series become alerts. This chapter
will show you how to configure alerts in Prometheus.

As you saw from the example in “Alerting” on page 31, Prometheus is not responsible
for sending out notifications such as emails, chat messages, or pages. That role is
handled by the Alertmanager.

Prometheus is where your logic to determine what is or isn’t alerting is defined. Once
an alert is firing in Prometheus, it is sent to an Alertmanager, which can take in alerts
from many Prometheus servers. The Alertmanager then groups alerts together and
sends you throttled notifications (Figure 18-1).

Figure 18-1. Prometheus and Alertmanager architecture

This architecture shown in Figure 18-1 allows you not only flexibility, but also the
ability to have a single notification based on alerts from multiple different Prome‐
theus servers. For example, if you had an issue propagating serving data to all of your

311

1 If a group gets too large to be calculated in one interval, you may have to split it up if trimming it down is not
an option.

datacenters, you could configure your alert grouping so that you got only a single
notification rather than being spammed by a notification for each datacenter you
have.

Alerting Rules
Alerting rules are similar to recording rules, which were covered in Chapter 17. You
place alerting rules in the same rule groups as recording rules, and can mix and
match as you see fit. For example, it is normal to have all the rules and alerts for a job
in one group:1

groups:
 - name: node_rules
 rules:
 - record: job:up:avg
 expr: avg without(instance)(up{job="node"})
 - alert: ManyInstancesDown
 expr: job:up:avg{job="node"} < 0.5

This defines an alert with the name ManyInstancesDown that will fire if more than
half of your Node Exporters are down. You can tell that it is an alerting rule because it
has an alert field rather than a record field.

In this example we are careful to use without rather than by so that any other
labels the time series have are preserved and will be passed on to the Alertmanager.
Knowing details such as the job, environment, and cluster of your alert is rather
useful when you get the eventual notification.

For recording rules, you should avoid filtering in your expressions, as time series
appearing and disappearing are challenging to deal with. For alerting rules, filtering
is essential. If evaluating your alert expression results in an empty instant vector, then
no alerts will fire, but if there are any samples returned, each of them will become an
alert.

Due to this, a single alerting rule like:

- alert: InstanceDown
 expr: up{job="node"} == 0

automatically applies to every instance in the node job that service discovery returns,
and if you had a hundred down instances you would get a hundred firing alerts. If
on the next evaluation cycle some of those instances are back up, those alerts are
considered resolved.

312 | Chapter 18: Alerting

2 This also applies to recording rules, but it is quite rare to have multiple recording rules with the same metric
name in a group.

An alert is identified across evaluation cycles by its labels and does not include the
metric name label __name__, but does include an alertname label with the name of
the alert.

In addition to sending alerts to the Alertmanager, your alerting rules will also popu‐
late two metrics: ALERTS and ALERTS_FOR_STATE. In addition to all the labels of your
alert, an alertstate label is also added to ALERTS. The alertstate label will have a
value of firing for firing alerts and pending for pending alerts, as discussed in “for”
on page 314. Resolved alerts do not have samples added to ALERTS. While you can use
ALERTS in your alerting rules as you would any other metric, we would advise caution
as it may indicate that you are overcomplicating your setup.

The value of ALERT_FOR_STATE is the Unix timestamp when the alert started. That
metric is used internally by Prometheus to restore the state of alerts after a restart.

Correct staleness handling for resolved alerts in ALERTS depends
on alerts always firing from the same alerting rule. If you have
multiple alerts with the same name in a rule group, and a given
alert can come from more than one of those alerting rules, then
you may see odd behavior from ALERTS.2

If you want notifications for an alert to be sent only at certain times of the day,
the Alertmanager does not support routing based on time. But you can use the
date functions described in “minute, hour, day_of_week, day_of_month, day_of_year,
days_in_month, month, and year” on page 284. For example:

- alert: ManyInstancesDown
 expr: >
 (
 avg without(instance)(up{job="node"}) < 0.5
 and on()
 hour() >= 9 < 17
)

This alert will only fire from 9 a.m. to 5 p.m. UTC. It is common to use and as
discussed in “and operator” on page 274 to combine alerting conditions together.
Here we used on() as there were no shared labels between the two sides of the and,
which is not usually the case.

Alerting Rules | 313

For batch jobs, you will want to alert on the job not having succeeded recently:

- alert: BatchJobNoRecentSuccess
 expr: >
 time() - my_batch_job_last_success_time_seconds{job="batch"} > 86400*2

As discussed in “Idempotency for Batch Jobs” on page 58, with idempotent batch jobs
you can avoid having to care about or be notified by a single failure of a batch job.

for
Metrics-based monitoring involves many race conditions—a scrape may timeout due
to a lost network packet, a rule evaluation could be a little delayed due to process
scheduling, and the systems you are monitoring could have a brief blip.

You don’t want to be woken up in the middle of the night for every artifact or oddity
in your systems; you want to save your energy for real problems that affect users.
Accordingly, firing alerts based on the result of a single rule evaluation is rarely a
good idea. This is where the for field of alerting rules comes in:

groups:
- name: node_rules
 rules:
 - record: job:up:avg
 expr: avg without(instance)(up{job="node"})
 - alert: ManyInstancesDown
 expr: avg without(instance)(up{job="node"}) < 0.5
 for: 5m

The for field says that a given alert must be returned for at least this long before it
starts firing. Until the for condition is met, an alert is considered to be pending. An
alert in the pending state but that has not yet fired is not sent to the Alertmanager.
You can view the current pending and firing alerts at http://localhost:9090/alerts,
which will look like Figure 18-2 after you click on an alert name.

Prometheus has no notion of hysteresis or flapping detection for alerting. You should
choose your alert thresholds so that the problem is sufficiently bad that it is worth
calling in a human, even if the problem subsequently subsides.

We generally recommend using a for of at least 5 minutes for all of your alerts. This
will eliminate false positives from the majority of artifacts, including from brief flaps.
You may worry that this will prevent you from jumping immediately on an issue, but
keep in mind that it will likely take you the guts of 5 minutes to wake up, boot up
your laptop, log in, connect to the corporate network, and start debugging. Even if
you are sitting in front of your computer all ready to go, it is our experience that once
your system is well developed, the alerts you will handle will be nontrivial and it will
take you at least 20–30 minutes just to get an idea of what is going on.

314 | Chapter 18: Alerting

Figure 18-2. The Alert status page displays firing and pending alerts

While wanting to immediately jump on every problem is commendable, a high rate
of alerts will burn you and your team out and greatly reduce your effectiveness. If you
have an alert that requires a human to take an action in less than 5 minutes, then you
should work toward automating that action as such a response time comes at a high
human cost if you can even reliably react in less than 5 minutes.

You may have some alerts that are less critical or a bit more noisy, with which
you would use a longer duration in the for field. As with other durations and
intervals, try to keep things simple. For example, across all of your alerts a 5m, 10m,
30m, and 1h for are probably sufficient in practice and there’s not much point in
micro-optimizing by adding a 12m or 20m on top of that.

Because for requires that your alerting rule return the same time series for a period
of time, your for state can be reset if a single rule evaluation does not contain a given
time series. For example, if you are using a gauge metric that comes directly from a
target, if one of the scrapes fails, then the for state will be reset if you had an alerting
rule such as:

- alert: FDsNearLimit
 expr: >
 process_open_fds > process_max_fds * .8
 for: 5m

To protect against this gotcha you can use the _over_time functions, discussed in
“Aggregation Over Time” on page 295. Usually, you will want to use avg_over_time,
last_over_time, or max_over_time:

- alert: FDsNearLimit
 expr:
 (

Alerting Rules | 315

3 While the Blackbox Exporter should return a response before it times out, things can always go wrong, such
as the network being slow or the Blackbox Exporter being down.

 max_over_time(process_open_fds[5m])
 >
 max_over_time(process_max_fds[5m]) * 0.9
)
 for: 5m

The up metric is special in that it is always present even if a scrape fails, so you do not
need to use an _over_time function. So if you were running the Blackbox Exporter,
as covered in “Blackbox” on page 194, and wanted to catch both failed scrapes or
failed probes,3 you could use:

- alert: ProbeFailing
 expr: up{job="blackbox"} == 0 or probe_success{job="blackbox"} == 0
 for: 5m

Alert Labels
Just like with recording rules, you can specify labels for an alerting rule. Using
labels with recording rules is quite rare, but it is standard practice with alerting
rules.

When routing alerts in the Alertmanager, as covered in “Routing Tree” on page 327,
you do not want to have to mention the name of every single alert you have individu‐
ally in the Alertmanager’s configuration file. Instead, you should take advantage of
labels to indicate intent.

It is usual for you to have a severity label indicating whether an alert is intended to
page someone, and potentially wake them up, or that it is a ticket that can be handled
less urgently.

For example, a single machine being down should not be an emergency, but half your
machines going down requires urgent investigation:

- alert: InstanceDown
 expr: up{job="node"} == 0
 for: 1h
 labels:
 severity: ticket
- alert: ManyInstancesDown
 expr: job:up:avg{job="node"} < 0.5
 for: 5m
 labels:
 severity: page

The severity label here does not have any special semantic meaning; it’s merely a
label added to the alert that will be available for your use when you configure the

316 | Chapter 18: Alerting

Alertmanager. As you add alerts in Prometheus, you should set things up so you only
need to add a severity label to get the alert routed appropriately, and rarely have to
adjust your Alertmanager configuration.

In addition to the severity label, if a Prometheus can send alerts to different teams,
it’s not unusual to have a team or service label. If an entire Prometheus was only
sending alerts to one team, you would use external labels (as discussed in “External
Labels” on page 323). There should be no need to mention labels like env or region
in alerting rules; they should already either be on the alert due to being target labels
that end up in the output of the alerting expression, or will be added subsequently by
external_labels.

Because all the labels of an alert, from both the expression and the labels, define
the identity of an alert, it is important that they do not vary from evaluation cycle to
evaluation cycle. Aside from such alerts never satisfying the for field, they will spam
the time series database within Prometheus, the Alertmanager, and you.

Prometheus does not permit an alert to have multiple thresholds, but you can define
multiple alerts with different thresholds and labels:

- alert: FDsNearLimit
 expr: >
 process_open_fds > process_max_fds * .95
 for: 5m
 labels:
 severity: page
- alert: FDsNearLimit
 expr: >
 process_open_fds > process_max_fds * .8
 for: 5m
 labels:
 severity: ticket

Note that if you are over 95% of the file descriptor limit, both of these alerts will fire.
Attempting to make only one of them fire would be dangerous, because if the value
was oscillating around 95%, then neither alert would ever fire. In addition, an alert
firing should be a situation where you have already decided it is worth demanding a
human take a look at an issue. If you feel this may be spammy, then you should try
to adjust the alerts themselves and consider if they are worth having in the first place,
rather than trying to put the genie back in the bottle when the alert is already firing.

Alerting Rules | 317

4 I am also strongly against any form of email that was not written by hand by a human going to team mailing
lists, including from alerts, pull requests, and bug/issue trackers.

5 Invariably among the thousands of spam alerts that everyone ignored there was one alert that foreshadowed
the outage. Hindsight is 20/20, but to spot that email you would have had to also investigate the thousands of
irrelevant notifications.

Alerts Need Owners
Brian purposefully did not include a severity of email or chat in the examples. To
explain why, let him tell you a story:

I was once on a team that had to create a team mailing list every few months. There
was a mailing list for email alerts, but alerts sent there didn’t always get the attention
that was desired as there were just too many of them and responsibility was diffuse,
which is to say it wasn’t actually anyone’s job to take care of them. There were some
alerts considered important, but not important enough to page the on call engineer.
So these alerts were sent to the main team mailing list, in the hope that someone
would take a look. Fast forward a bit and the exact same thing happened to the team
mailing list, which now had regular automated alerts coming in. At some point it got
bad enough that a new team mailing list was created, and this story repeated itself, at
which point this team had three email alert lists.

Based on this experience and that of others, I strongly discourage email alerts and
alerts that are assigned to a team.4 Instead, I advocate having alert notifications going
to a ticketing system of some form, where they will be assigned to a specific person
whose job it is to handle them. I have also seen it work out to have a daily email to the
on call team members that lists all currently firing alerts.

After an outage it is everyone’s fault for not looking at the email alerts,5 but still not
anyone’s responsibility. The key point is that there needs to be ownership and not
merely using email as logging.

The same applies to chat messages for alerts, with messaging systems such as IRC,
Slack, and Telegram. Having your pages duplicated to your messaging system is
handy, and pages are rare. Having nonpages duplicated has the same issues as email
alerts, and is worse as it tends to be more distracting. You can’t filter chat messages
away to a folder you ignore like you do with emails.

Annotations and Templates
Alert labels define the identity of the alert, so you can’t use them to provide additional
information about the alert such as its current value as that can vary from evaluation
cycle to evaluation cycle. Instead, you can use alert annotations, which are similar to
labels and can be used in notifications. However, annotations are not part of an alert’s
identity, so they cannot be used for grouping and routing in the Alertmanager.

318 | Chapter 18: Alerting

6 For more advanced cases than this, you can consider using the and operator with the value for templating
usage on the lefthand side and the alerting expression on the righthand side.

7 Despite the name, this is actually a sprintf as it returns the output rather than writing it out. This allows you
to build up a query that is passed to the query function using printf.

The annotations field allows you to provide additional information about an alert,
such as a brief description of what is going wrong. In addition, the values of the
annotations field are templated using Go’s templating system. This allows you to
format the value of the query to be more readable, or even perform additional
PromQL queries to add additional context to alerts.

Prometheus does not send the value of your alerts to the Alertmanager. Because
Prometheus allows you to use the full power of PromQL in alerting rules, there is no
guarantee that the value of an alert is in any way useful or even meaningful. Labels
define an alert rather than a value, and alerts can be more than a simple threshold on
a single time series.

For example, you may wish to present the number of instances that are up as a
percentage in an annotation. It’s not easy to do math in Go’s templating system, but
you can prepare the value in the alert expression:6

groups:
 - name: node_rules
 rules:
 - alert: ManyInstancesDown
 for: 5m
 expr: avg without(instance)(up{job="node"}) * 100 < 50
 labels:
 severity: page
 annotations:
 summary: 'Only {{printf "%.2f" $value}}% of instances are up.'

Here $value is the value of your alert. It is being passed to the printf function,7

which formats it nicely. Curly braces indicate template expressions.

In addition to $value, there is $labels with the labels of the alert. For example,
$labels.job would return the value of the job label.

You can evaluate queries in annotation templates by using the query function. Usu‐
ally you will want to then range over the result of the query, which is a for loop:

- alert: ManyInstancesDown
 for: 5m
 expr: avg without(instance)(up{job="node"}) < 0.5
 labels:
 severity: page
 annotations:
 summary: 'More than half of instances are down.'
 description: >

Alerting Rules | 319

https://oreil.ly/x0tjn

8 A playbook is a document or set of procedures that outlines the steps to be taken in response to a specific type
of incident.

 Down instances: {{ range query "up{job=\"node\"} == 0" }}
 {{ .Labels.instance }}
 {{ end }}

The value of the element will be in ., which is a single period or full stop
character. So .Labels is the labels of the current sample from the instant vector,
and .Labels.instance is the instance label of that sample. .Value contains the value
of the sample within the range loop.

Every alert that results from an alerting rule has its templates
evaluated independently on every evaluation cycle. If you had an
expensive template for a rule producing hundreds of alerts, it could
cause you performance issues.

You can also use annotations with static values, such as links to useful dashboards or
documentation:

- alert: InstanceDown
 for: 5m
 expr: up{job="prometheus"} == 0
 labels:
 severity: page
 annotations:
 summary: 'Instance {{$labels.instance}} of {{$labels.job}} is down.'
 dashboard: http://some.grafana:3000/dashboard/db/prometheus

In a mature system, attempting to provide all possible debug information in an alert
would not only be slow and confuse the on call person, but would likely also be of
minimal use for anything but the simplest of issues. You should consider alert anno‐
tations and notifications primarily as a signpost to point you in the right direction
for initial debugging. You can gain far more detailed and up-to-date information in a
dashboard than you can in a few lines of an alert notification.

Notification templating (covered in “Notification templates” on page 337) is another
layer of templating performed in the Alertmanager. In terms of what to put where,
think of notification templating as being an email with several blanks that need to be
filled in. Alert templates in Prometheus provide values for those blanks.

For example, you may wish to have a playbook8 for each of your alerts linked from
the notification, and you will probably name the wiki pages after the alerts. You could
add a wiki annotation to every alert, but any time you find yourself adding the same
annotation to every alerting rule, you should probably be using notification templat‐
ing in the Alertmanager instead. The Alertmanager already knows the alert’s name

320 | Chapter 18: Alerting

9 Users don’t have to be customers of your company, such as if you are running an internal service within a
company.

10 We will demonstrate this in detail in “Meta- and Cross-Monitoring” on page 373.

so it can default to wiki.mycompany/Alertname, saving you from having to repeat
yourself in alerting rules. As with many things in configuration management and
monitoring, having consistent conventions across your team and company makes life
easier.

Alerting rule labels are also templated in the same fashion as
annotations, but this is only useful in advanced use cases, and you
will almost always have simple static values for labels. If you do
use templating on labels, it is important that the label values do
not vary from evaluation cycle to evaluation cycle.

What Are Good Alerts?
In Nagios-style monitoring, it would be typical to alert on potential issues such as
high load average, high CPU usage, or a process not running. These are all potential
causes of problems, but they do not necessarily indicate a problem that requires the
urgent intervention by a human that paging the on call person implies.

As systems grow ever more complex and dynamic, having alerts on every possible
thing that can go wrong is not tractable. Even if you could manage to do so, the
volume of false positives would be so high that you and your team would get burned
out and end up missing real problems buried among the noise.

A better approach is to instead alert on symptoms. Your users do not care whether
your load average is high; they care if their cat videos aren’t loading quickly enough.
By having alerts on metrics such as latency and failures experienced by users,9 you
will spot problems that really matter, rather than things that maybe might possibly
indicate an issue.

For example, nightly cronjobs may cause CPU usage to spike, but with few users
at that time of day you probably will have no problems serving them. Conversely,
intermittent packet loss can be tricky to alert on directly, but will be fairly clearly
exposed by latency metrics. If you have Service-Level Agreements (SLAs) with your
users, then those provide good metrics to alert on and good starting points for your
thresholds. You should also have alerts to catch resource utilization issues, such as
running out of quota or disk space, and alerts to ensure that your monitoring is
working.10

The ideal to aim for is that every page to the on call person, and every alert ticket
filed, requires intelligent human action. If an alert doesn’t require intelligence to

Alerting Rules | 321

resolve, then it is a prime candidate for you to automate. As a nontrivial on call
incident can take a few hours to resolve, you should aim for less than two incidents
per day. For nonurgent alerts going to your ticketing system you don’t have to be as
strict, but you wouldn’t want too many more than you have pages.

If you find yourself responding to pages with “it went away,” that is an indication that
the alert should not have fired in the first place. You should consider bumping the
threshold of the alert to make it less sensitive, or potentially deleting the alert.

For further discussion of how to approach alerting on and managing systems we
would recommend reading “My Philsophy on Alerting” by Rob Ewaschuk. Rob also
wrote Chapter 6 of Site Reliability Engineering (Betsy Beyer et al, eds., O’Reilly), which
also has more general advice on how to manage systems.

Configuring Alertmanagers in Prometheus
You configure Prometheus with a list of Alertmanagers to talk to using the same
service discovery configuration covered in Chapter 8. For example, to configure a
single local Alertmanager, you might have a prometheus.yml that looks like:

global:
 scrape_interval: 10s
 evaluation_interval: 10s
alerting:
 alertmanagers:
 - static_configs:
 - targets: ['localhost:9093']
rule_files:
 - rules.yml
scrape_configs:
 - job_name: node
 static_configs:
 - targets:
 - localhost:9100
 - job_name: prometheus
 static_configs:
 - targets:
 - localhost:9090

This section of the configuration is focused on setting up the discovery of the
Alertmanagers.

Here the alertmanagers field works similarly to a scrape config, but there is no
job_name and labels output from relabeling have no impact since there is no notion
of target labels when discovering the Alertmanagers to send alerts to. Accordingly,
any relabeling will typically only involve drop and keep actions.

322 | Chapter 18: Alerting

https://oreil.ly/WYPVf

11 Covered in “Going Global with Federation” on page 360 and “Long-Term Storage” on page 363.

You can have more than one Alertmanager, which will be further covered in “Alert‐
manager Clustering” on page 372. Prometheus will send all alerts to all the config‐
ured Alertmanagers.

The alerting field also has alert_relabel_configs, which is relabeling, as covered
in “Relabeling” on page 149, but applied to alert labels. You can adjust alert labels, or
even drop alerts. For example, you may wish to have informational alerts that never
make it outside your Prometheus:

alerting:
 alertmanagers:
 - static_configs:
 - targets: ['localhost:9093']
 alert_relabel_configs:
 - source_labels: [severity]
 regex: info
 action: drop

You could use this to add env and region labels to all your alerts, saving you hassle
elsewhere, but there is a better way to do this using external_labels.

External Labels
External labels are labels applied as defaults when your Prometheus talks to other
systems, such as the Alertmanager, federation, remote read, and remote write,11

but not the HTTP query APIs. External labels are the identity of Prometheus, and
every single Prometheus in your organization should have unique external labels.
external_labels is part of the global section of prometheus.yml:

global:
 scrape_interval: 10s
 evaluation_interval: 10s
 external_labels:
 region: eu-west-1
 env: prod
 team: frontend
alerting:
 alertmanagers:
 - static_configs:
 - targets: ['localhost:9093']

It is easiest to have labels such as region in your external_labels as you don’t have
to apply them to every single target that is scraped, keep them in mind when writing
PromQL, or add them to every single alerting rule within a Prometheus. This saves
you time and effort, and also makes it easier to share recording and alerting rules
across different Prometheus servers as they aren’t tied to one environment or even

Configuring Alertmanagers in Prometheus | 323

12 alert_relabel_configs happens after external_labels.

to one organization. If a potential external label varies within a Prometheus, then it
should probably be a target label instead.

Since external labels are applied after alerting rules are evaluated,12 they are not
available in alert templating. Alerts should not care which of your Prometheus servers
they are being evaluated in, so this is OK. The Alertmanager will have access to the
external labels just like any other label in its notification templates, and that is the
appropriate place to work with them.

External labels are only defaults; if one of your time series already has a label with the
same name, then that external label will not apply. Accordingly, we advise not having
targets whose label names overlap with your external labels.

Now that you know how to have Prometheus evaluate and fire useful alerts, the next
step is to configure the Alertmanager to convert them into notifications, the topic of
the next chapter.

324 | Chapter 18: Alerting

CHAPTER 19

Alertmanager

In Chapter 18 you saw how to define alerting rules in Prometheus, which result in
alerts being sent to the Alertmanager. It is the responsibility of your Alertmanager
to take in all the alerts from all of your Prometheus servers and convert them to
notifications such as emails, chat messages, and pages. Chapter 2 gave you a brief
introduction to using the Alertmanager, but in this chapter you will learn how to
configure and use the full power of it.

Notification Pipeline
The Alertmanager does more for you than blindly convert alerts into notifications on
a one-to-one basis. In an ideal world you would receive exactly one notification for
each production incident. While this is a stretch, the Alertmanager tries to get you
there by providing you with a controllable pipeline for how your alerts are processed
as they become notifications. Just as labels are at the core of Prometheus itself, labels
are also key to the Alertmanager:

Inhibition
On occasion, even when using symptom-based alerting, you will want to prevent
notifications for some alerts if another more severe alert is firing, such as pre‐
venting alerts for your service if a datacenter it is in is failing but is also receiving
no traffic. This is the role of inhibition.

Silencing
If you already know about a problem or are taking a service down for mainte‐
nance, there’s no point in paging the on call person about it. Silences allow you
to ignore certain alerts for a while, and are added via the Alertmanager’s web
interface.

325

1 In datacenters, machines are typically organized in vertical racks, with each rack usually having its own power
setup and a network switch. It is thus not uncommon for an entire rack to disappear at once due to a power or
switch issue.

2 amtool can also be used to query alerts and work with silences.

Routing
It is intended that you would run one Alertmanager per organization, but it
wouldn’t do for all of your notifications to go to one place. Different teams will
want their notifications delivered to different places; and even within a team
you might want alerts for production and development environments handled
differently. The Alertmanager allows you to configure this with a routing tree.

Grouping
You now have the production alerts for your team going to a route. Getting
an individual notification for each of the machines in a rack1 that failed would
be spammy, so you could have the Alertmanager group alerts and only get one
notification per rack, one notification per datacenter, or even one notification
globally about the unreachable machines.

Throttling and repetition
You have your group of alerts that are firing due to the rack of machines being
down, and the alert for one of the machines on the rack comes in after you
have already sent out the notification. If Alertmanager sent a new notification
every time a new alert comes in from a group, that would defeat the purpose of
grouping. Instead, the Alertmanager will throttle notifications for a given group
so you don’t get spammed.

In an ideal world all notifications would be handled promptly, but in reality the
on call person or other system might let an issue slip through the cracks. The
Alertmanager will repeat notifications so that they don’t get lost for too long.

Notification
Now that your alerts have been inhibited, silenced, routed, grouped, and throt‐
tled, they finally get to the stage of being sent out as notifications through a
receiver. Notifications are templated, allowing you to customize their content and
emphasize the details that matter to you.

Configuration File
As with all the other configurations you have seen, the Alertmanager is configured
via a YAML file often called alertmanager.yml. As with Prometheus, the configuration
file can be reloaded at runtime by sending a SIGHUP or sending an HTTP POST to
the /-/reload endpoint. To detect bad configuration files in advance, you can use the
amtool check-config command to check your alertmanager.yml.2

326 | Chapter 19: Alertmanager

For example, a minimal configuration that sends everything to an email address
using a local SMTP server would look like:

global:
 smtp_smarthost: 'localhost:25'
 smtp_from: 'yourprometheus@example.org'

route:
 receiver: example-email

receivers:
 - name: example-email
 email_configs:
 - to: 'youraddress@example.org'

The email address that will be used as the From field.

The email address the emails will be sent to.

You must always have at least one route and one receiver. There are various global
settings, which are almost all defaults for the various types of receivers. We will
now cover the various other parts of the configuration file. You can find a full
alertmanager.yml combining the examples in this chapter on GitHub.

Routing Tree
The route field specifies the top-level, fallback, or default route. Routes form a tree,
so you can and usually will have multiple routes below that. For example, you could
have:

route:
 receiver: fallback-pager
 routes:
 - matchers:
 - severity = page
 receiver: team-pager
 - matchers:
 - severity = ticket
 receiver: team-ticket

When an alert arrives, it starts at the default route and tries to match against its first
child route, which is defined in the (possibly empty) routes field. If your alert has
a label that is exactly severity="page", it matches this route and matching halts, as
this route has no children to consider.

If your alert does not have a severity="page" label, then the next child route of the
default route is checked; in this case, for a severity="ticket" label. If this matches
your alert, then matching will also halt. Otherwise, since all the child routes have
failed to match, matching goes back up the tree and matches the default route. This is

Configuration File | 327

https://oreil.ly/hQduB

3 The reReplaceAll function in alert and notification templates is not anchored, as that would defeat its
purpose.

known as a post-order tree transversal, which is to say that children are checked before
their parent, and the first match wins.

Next to the = operator in matchers, there are other operators like !=, =~, and !~ .
=~ requires that the given label match the given regular expression, and !~ requires
that it does not match the given regular expression. As with almost3 all other places,
regular expressions are fully anchored. For a refresher on regular expressions, see
“Regular Expressions” on page 152.

You could use =~ if there were variants in what label values were used for a given
purpose, such as if some teams used ticket, others used issue, and others had yet to
be convinced that email was possibly not the best place to send notifications:

route:
 receiver: fallback-pager
 routes:
 - matchers:
 - severity = page
 receiver: team-pager
 - matchers:
 - severity =~ "(ticket|issue|email)"
 receiver: team-ticket

Multiple matchers can be used in the same route, and alerts must satisfy all of the
match conditions.

All alerts must match some route, and the top-level route is the last
route checked, so it acts as a fallback that all alerts must match.
Thus it is an error for you to use matchers on the default route.

Rarely will it just be one team using an Alertmanager, and different teams will want
alerts routed differently. You should have a standard label such as team or service
across your organization that distinguishes who owns what alerts. This label will
usually but not always come from external_labels, as discussed in “External Labels”
on page 323. Using this team-like label you would have a route per team, and then the
teams would have their own routing configuration below that:

328 | Chapter 19: Alertmanager

https://oreil.ly/heUJc

4 Receiver naming is just a convention, but if your configuration does not result in the backend-ticket receiver
creating a ticket, it would be quite misleading.

route:
 receiver: fallback-pager
 routes:
 # Frontend team.
 - matchers:
 - team = frontend
 receiver: frontend-pager
 routes:
 - matchers:
 - severity = page
 receiver: frontend-pager
 - matchers:
 - severity = ticket
 receiver: frontend-ticket
 # Backend team.
 - matchers:
 - team = backend
 receiver: backend-pager
 routes:
 - matchers:
 - severity = page
 - env = dev
 receiver: backend-ticket
 - matchers:
 - severity = page
 receiver: backend-pager
 - matchers:
 - severity = ticket
 receiver: backend-ticket

The frontend team has a simple setup, with pages going to the pager, tickets going
to the ticketing system, and any pages with unexpected severity labels going to the
pager.

The backend team has customized things a little. Any pages from the development
environment will be sent to the backend-ticket receiver, which is to say that they
will be downgraded to just tickets rather than pages.4 In this way you can have alerts
from different environments routed differently in the Alertmanager, saving you from
having to customize alerting rules per environment. This approach allows you to only
have to vary the external_labels in most cases.

It can be a little challenging to come to grips with an existing
routing tree, particularly if it doesn’t follow a standard structure.
There is a visual routing tree editor on the Prometheus website that
can show you the tree and what routes alerts will follow on it.

Configuration File | 329

https://oreil.ly/KtvK-

Because such a configuration grows as you gain more teams, you may want to write
a utility to combine routing tree fragments together from smaller files. YAML is a
standard format with readily available unmarshallers and marshallers, so this is not a
difficult task.

There is one other setting we should mention in the context of routing—continue.
Usually the first matching route wins, but if continue: true is specified, then a
match will not halt the process of finding a matching route. Instead, a matching
continue route will be matched and the process of finding a matching route will
continue. In this way an alert can be part of multiple routes. continue is primarily
used to log all alerts to another system:

route:
 receiver: fallback-pager
 routes:
 # Log all alerts.
 - receiver: log-alerts
 continue: true
 # Frontend team.
 - matchers:
 - team = frontend
 receiver: frontend-pager

Once your alert has a route, the grouping, throttling, repetition, and receiver for that
route will apply to that alert and all the other alerts that match that route. All settings
for child routes are inherited as defaults from their parent route, with the exception
of continue.

Grouping
Your alerts have now arrived at their route. By default, the Alertmanager will put all
alerts for a route into a single group, meaning you will get one big notification. While
this may be OK in some cases, usually you will want your notifications a bit more
bite-sized than that.

The group_by field allows you to specify a list of labels to group alerts by; this
works in the same way as the by clause that you can use with aggregation operators
(discussed in “by” on page 251). Typically you will want to split out your alerts by one
or more of alertname, environment, and/or location.

An issue in production is unlikely to be related to an issue in development, and
similarly with issues in different datacenters depending on the exact alert. When

330 | Chapter 19: Alertmanager

5 On the other hand, if you are following the RED method, a high failure ratio and high latency can occur
together. In practice, one usually happens a good bit before the other, leaving you plenty of time to mitigate
the issue or put in a silence.

alerting on symptoms rather than causes, as encouraged by “What Are Good Alerts?”
on page 321, it is likely that different alerts indicate different incidents.5

To use this in practice, you might end up with a configuration such as:

route:
 receiver: fallback-pager
 group_by: [team]
 routes:
 # Frontend team.
 - matchers:
 - team = frontend
 group_by: [region, env]
 receiver: frontend-pager
 routes:
 - matchers:
 - severity = page
 receiver: frontend-pager
 - matchers:
 - severity = ticket
 group_by: [region, env, alertname]
 receiver: frontend-ticket

Here the default route has its alerts grouped by the team label, so that any team
missing a route can be dealt with individually. The frontend team has chosen to
group alerts based on the region and env labels. This group_by will be inherited by
their child routes, so all their tickets and pages will also be grouped by region and
env.

Generally, it is not a good idea to group by the instance label, since that can get
very spammy when there is an issue affecting an entire application. However, if you
were alerting on machines being down in order to create tickets to have a human
physically inspect them, grouping by instance may make sense depending on the
inspection workflow.

Configuration File | 331

6 This is a YAML list composed of a string made of three dots.
7 A hundred pages would be a good-sized pager storm.

You can disable grouping alerting in the Alertmanager by setting
group_by to [...].6 However, grouping is a good thing, because
it reduces notification spam and allows you to perform more
focused incident response. It is far harder to miss a notification
about a new incident among a few pages than a hundred pages.7

If you want to disable grouping due to your organization already
having something that fills the Alertmanager’s role, you may be
better off not using the Alertmanager and working from the alerts
sent by Prometheus instead.

Throttling and repetition
When sending notifications for a group, you don’t want to get a new notification
every time the set of firing alerts changes as that would be too spammy. On the other
hand, neither do you only want to learn about additional alerts that started firing
many hours after the fact.

There are two settings you can adjust to control how the Alertmanager throttles
notifications for a group: group_wait and group_interval.

If you have a group with no alerts and then a new set of alerts starts firing, it is likely
that all these new alerts will not all start firing at exactly the same time. For example,
as scrapes are spread across the scrape interval, if a rack of machines fails, you will
usually spot some machines as down one interval before the others. It’d be good if
you could delay the initial notification for the group a little to see if more alerts are
going to come in. This is exactly what group_wait does. By default, the Alertmanager
will wait 30 seconds before sending the first notification. You may worry this will
delay response to incidents, but keep in mind that if 30 seconds matter, you should be
aiming for an automated rather than a human response.

Now that the first notification has been sent for the group, some additional alerts
might start firing for your group. When should the Alertmanager send you another
notification for the group, now including these new alerts? This is controlled by
group_interval, which defaults to 5 minutes. Every group interval after the first
notification, a new notification will be sent if there are new firing alerts. If there are
no new alerts for a group, you will not receive an additional notification.

Once all alerts stop firing for your group and an interval has passed, the state is reset
and group_wait will apply once again. The throttling for each group is independent,
so if you were grouping by region, then alerts firing for one region wouldn’t make
new alerts in another region wait for a group_interval, just a group_wait.

332 | Chapter 19: Alertmanager

Let’s take an example, where there are four alerts firing at different times:

t= 0 Alert firing {x="foo"}
t= 25 Alert firing {x="bar"}
t= 30 Notification for {x="foo"} and {x="bar"}
t=120 Alert firing {x="baz"}
t=330 Notification for {x="foo"}, {x="bar"} and {x="baz"}
t=400 Alert resolved {x="foo"}
t=700 Alert firing {x="quu"}
t=930 Notification for {x="bar"}, {x="baz"}, {x="quu"}

After the first alert the group_wait countdown starts, and a second alert comes in
while you are waiting. Both these foo and bar alerts will be in a notification sent 30
seconds in. Now the group_interval timer kicks in. In the first interval there is a
new baz alert, so 300 seconds (one group interval) after the first notification there
is a second notification containing all three alerts that are currently firing. At the
next interval one alert has been resolved, but there are no new alerts so there is no
notification at t=630. A fourth alert for quu fires, and at the next interval there is a
third notification containing all three alerts currently firing.

If an alert fires, resolves, and fires again within a group interval,
then it is treated in the same way as if the alert never stopped
firing. Similarly if an alert resolves, fires, and resolves again within
a group interval, it is the same as if the alert never fired in that
interval. This is not something to worry about in practice.

Neither humans nor machines are fully reliable; even if a page got through to the
on call person and they acknowledged it, they might forget about the alert if more
pressing incidents occur. For ticketing systems, you may have closed off an issue as
resolved, but you will want it reopened if the alert is still firing.

For this you can take advantage of the repeat_interval, which defaults to 4 hours. If
it has been a repeat interval since a notification was sent for a group with firing alerts,
a new notification will be sent. That is to say that a notification sent due to the group
interval will reset the timer for the repeat interval. A repeat_interval shorter than
the group_interval does not make sense.

If you are getting notifications too often, you probably want to
tweak group_interval rather than repeat_interval because the
issue is more likely alerts flapping rather than hitting the (usually
rather long) repeat interval.

The defaults for these settings are all generally sane, although you may wish to tweak
them a little. For example, even a complex outage tends to be under control within
4 hours, so if an alert is still firing after that long, it is a good bet that either the

Configuration File | 333

on call person forgot to put in a silence or forgot about the issue and the repeated
notification is unlikely to be spammy. For a ticketing system, once a day is generally
frequent enough to create and poke tickets, so you could set group_interval and
repeat_interval to a day. The Alertmanager will retry failed attempts at notification
a few times so there’s no need to reduce repeat_interval for that reason alone.
Depending on your setup you might increase group_wait and group_interval to
reduce the number of pages you receive.

All these settings can be provided on a per-route basis, and are inherited as defaults
by child routes. An example configuration using these might look like:

route:
 receiver: fallback-pager
 group_by: [team]
 routes:
 # Frontend team.
 - matchers:
 - team = frontend
 group_by: [region, env]
 group_interval: 10m
 receiver: frontend-pager
 routes:
 - matchers:
 - severity = page
 receiver: frontend-pager
 group_wait: 1m
 - matchers:
 - severity = ticket
 receiver: frontend-ticket
 group_by: [region, env, alertname]
 group_interval: 1d
 repeat_interval: 1d

Receivers
Receivers take your grouped alerts and produce notifications. A receiver contains
notifiers, which do the actual notifications. As of Alertmanager 0.24.0, the supported
notifiers are email, PagerDuty, Pushover, Slack, Opsgenie, VictorOps, WeChat, AWS
SNS, Telegram, and the webhook. Just as file SD is a generic mechanism for service
discovery, the webhook is the generic notifier that allows you to hook in systems that
are not supported out of the box.

The layout of receivers is similar to service discovery within a scrape config. All
receivers must have a unique name, and then may contain any number of notifiers. In
the simplest cases you will have a single notifier in a receiver:

334 | Chapter 19: Alertmanager

8 PagerDuty also has a Slack integration, which permits acknowledging alerts directly from Slack. This sort of
integration is quite handy, and can also cover pages coming from sources other than the Alertmanager that
are going to PagerDuty.

9 This is preferable to using continue as it is less fragile, and you don’t have to keep multiple routes in sync.

receivers:
 - name: fallback-pager
 pagerduty_configs:
 - service_key: XXXXXXXX

PagerDuty is one of the simpler notifiers to get going with, since it only requires
a service key to work. All notifiers need to be told where to send the notification,
whether that’s the name of a chat channel, an email address, or whatever other
identifiers a system may use. Most notifiers are for commercial software as a service
(SaaS) offerings, and you will need to use their UI and documentation to obtain the
various keys, identifiers, URLs, and tokens that are specific to you, and where exactly
you want the notification sent to. We are not going to attempt to give full instructions
here, because the notifiers and SaaS UIs are constantly changing.

You might also have one receiver going to multiple notifiers, such as having the
frontend-pager receiver sending notifications both to your PagerDuty service and
your Slack channel:8

receivers:
 - name: frontend-pager
 pagerduty_configs:
 - service_key: XXXXXXXX
 slack_configs:
 - api_url: https://hooks.slack.com/services/XXXXXXXX
 channel: '#pages'

Some of the notifiers have settings that you will want to be the same across all your
uses of that notifier, such as the VictorOps API key. You could specify that in each
receiver, but the Alertmanager also has a globals section for these so you only need to
specify in the case of VictorOps a routing key in the notifier itself:

global:
 victorops_api_key: XXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

receivers:
 - name: backend-pager
 victorops_configs:
 - routing_key: a_route_name

Since each field like victorops_configs is a list, you can send notifications to
multiple different notifiers of one type at once, such as sending to multiple Telegram
chats:9

Configuration File | 335

receivers:
 - name: backend-pager
 opsgenie_configs:
 - teams: backendTeam # This is a comma separated list.
 telegram_configs:
 - bot_token: XXX
 chat_id: YYY
 - bot_token: XXX
 chat_id: ZZZ

It is also possible for you to specify no receivers at all, which will not result in any
notifications:

receivers:
 - name: null

However, it’d be better where possible for you not to send alerts to the Alertmanager
in the first place, rather than spending Alertmanager resources on processing alerts
just to throw them away.

The webhook notifier is unique in that it doesn’t directly notify an existing paging
or messaging system that you might already have in place. Instead, it sends all the
information the Alertmanager has about a group of alerts as a JSON HTTP message
and allows you to do what you like with it. You could use this to log your alerts, to
perform an automated action of some form, or to send a notification via some system
that the Alertmanager doesn’t support directly. An HTTP endpoint that accepts an
HTTP POST from a webhook notification is known as a webhook receiver.

While it’s tempting to use webhooks liberally to execute code, it’s
wise to keep your control loops as small as possible. For example,
rather than going from an exporter to Prometheus to the Alert‐
manager to a webhook receiver to restart a stuck process, keeping
it all on one machine with a supervisor such as Supervisord or
Monit is a better idea. This will provide a faster response time, and
generally be more robust due to fewer moving parts.

The webhook notifier is similar to the others; it takes a URL to which notifications
are sent. If you were logging all alerts, you would use continue on the first route,
which would go to a webhook:

route:
 receiver: fallback-pager
 routes:
 - receiver: log-alerts
 continue: true
 # Rest of routing config goes here.

receivers:
 - name: log-alerts

336 | Chapter 19: Alertmanager

10 For the webhook it is expected that the webhook receiver was specifically designed to work with the JSON
message that is sent, so no templating of the webhook message sent is required. In fact, the JSON message is
the exact same data structure that notification templates use under the covers.

 webhook_configs:
 - url: http://localhost:1234/log

You could use a Python 3 script such as in Example 19-1 to take in these notifications
and process the alerts within.

Example 19-1. A simple webhook receiver written in Python 3

import json
from http.server import BaseHTTPRequestHandler
from http.server import HTTPServer

class LogHandler(BaseHTTPRequestHandler):
 def do_POST(self):
 self.send_response(200)
 self.end_headers()
 length = int(self.headers['Content-Length'])
 data = json.loads(self.rfile.read(length).decode('utf-8'))
 for alert in data["alerts"]:
 print(alert)

if __name__ == '__main__':
 httpd = HTTPServer(('', 1234), LogHandler)
 httpd.serve_forever()

All HTTP-based receivers have a field called http_config which, similar to the
settings in a scrape config as discussed in “How to Scrape” on page 162, allows setting
a proxy_url, HTTP Basic Authentication, TLS settings, and other HTTP-related
configuration.

Notification templates
The layouts of messages from the various notifiers are fine to use when starting out,
but you will probably want to customize them as your setup matures. All notifiers
except the webhook10 permit templating using the same Go templating system as you
used for alerting rules in “Annotations and Templates” on page 318. However, the
data and functions you have access to are slightly different, as you are dealing with a
group of alerts rather than a single alert.

As an example, you might always want the region and env labels in your Slack
notification:

receivers:
 - name: frontend-pager

Configuration File | 337

https://oreil.ly/pY91X

 slack_configs:
 - api_url: https://hooks.slack.com/services/XXXXXXXX
 channel: '#pages'
 title: 'Alerts in {{ .GroupLabels.region }} {{ .GroupLabels.env }}!'

This will produce a notification like the one you see in Figure 19-1.

Figure 19-1. A message in Slack with the region and environment

GroupLabels is one of the top-level fields you can access in templating, but there are
several others:

GroupLabels

GroupLabels contains the group labels of the notification, so will be all the labels
listed in the group_by for the route that this group came from.

CommonLabels

CommonLabels is all the labels that are common across all the alerts in your
notification. This will always include all the labels in GroupLabels, and also
any other labels that happen to be common. This is useful for opportunistically
listing similarities in alerts. For example, if you were grouping by region and a
rack of machines failed, the alerts for all the down instances might all have a
common rack label that you could access in CommonLabels. However, if a single
other machine in another rack failed, the rack label would no longer be in your
CommonLabels.

CommonAnnotations

CommonAnnotations is like CommonLabels, but for annotations. This is of very
limited use. As your annotations tend to be templated, it is unlikely that there will
be any common values. However, if you had a simple string as an annotation, it
might show up here.

ExternalURL

ExternalURL will contain the external URL of this Alertmanager, which can make
it easier to get to the Alertmanager to create a silence. You can also use it to figure
out which of your Alertmanagers sent a notification in a clustered setup. There
is more discussion of external URLs in “Networks and Authentication” on page
368.

338 | Chapter 19: Alertmanager

11 For other systems it should be a link to whatever is generating the alert.

Status

Status will be firing if at least one alert in the notification is firing; if all alerts
are resolved, it will be resolved. Resolved notifications are covered in “Resolved
notifications” on page 343.

Receiver

The name of the receiver, which is frontend-pager in the preceding example.

GroupKey

An opaque string with a unique identifier for the group. This is of no use to
humans, but it helps ticketing and paging systems tie notifications from a group
to previous notifications. This could be useful to prevent opening a new ticket in
your ticketing system if there was already one open from the same group.

Alerts

Alerts is the actual meat of the notification, a list of all the alerts in your
notification.

Within each alert in the Alerts list there are also several fields:

Labels

As you would expect, this contains the labels of your alert.

Annotations

No prizes for guessing that this contains the annotations of your alert.

Status

firing if the alert is firing; otherwise, it’ll be resolved.

StartsAt

This is the time the alert started firing as a Go time.Time object. Due to how
Prometheus and the alerting protocol work, this is not necessarily when the alert
condition was first satisfied. This is of little use in practice.

EndsAt

This is when the alert will stop or has stopped firing. This is of no use for firing
alerts, but will tell you when a resolved alert resolved.

GeneratorURL

For alerts from Prometheus,11 this is a link to the alerting rule on the Prometheus
web interface, which can be handy for debugging. To us, the real reason this
field exists is for a future Alertmanager feature that will allow you to drop alerts

Configuration File | 339

12 To work around this, you can set a variable such as {{ $dot := . }} and then access $dot.

coming from a particular source, such as if there’s a broken Prometheus that you
can’t shut down sending bad alerts to the Alertmanager.

You can use these fields as you see fit in your templates. For example, you may wish
to include all the labels, a link to your wiki, and a link to a dashboard in all of your
notifications:

receivers:
 - name: frontend-pager
 slack_configs:
 - api_url: https://hooks.slack.com/services/XXXXXXXX
 channel: '#pages'
 title: 'Alerts in {{ .GroupLabels.region }} {{ .GroupLabels.env }}!'
 text: >
 {{ .Alerts | len }} alerts:
 {{ range .Alerts }}
 {{ range .Labels.SortedPairs }}{{ .Name }}={{ .Value }} {{ end }}
 {{ if eq .Annotations.wiki "" -}}
 Wiki: http://wiki.mycompany/{{ .Labels.alertname }}
 {{- else -}}
 Wiki: http://wiki.mycompany/{{ .Annotations.wiki }}
 {{- end }}
 {{ if ne .Annotations.dashboard "" -}}
 Dashboard: {{ .Annotations.dashboard }}®ion={{ .Labels.region }}
 {{- end }}

 {{ end }}

Let’s break this down:

{{ .Alerts | len }} alerts:

.Alerts is a list, and the built-in len function of Go templates counts how many
alerts you have in the list. This is about the most math you can do in Go templates as
there are no math operators, so you should use alerting templates in Prometheus, as
discussed in “Annotations and Templates” on page 318, to calculate any numbers and
render them nicely:

{{ range .Alerts }}
{{ range .Labels.SortedPairs }}{{ .Name }}={{ .Value }} {{ end }}

This iterates over the alerts and then the sorted labels of each alert.

range in Go templates reuses . as the iterator, so the original . is shadowed or hidden
while you are inside the iteration.12 While you could iterate over the label key value
pairs in the usual Go fashion, they will not be in a consistent order. The SortedPairs
method of the various label and annotation fields sorts the label names and provides
a list that you can iterate over:

340 | Chapter 19: Alertmanager

{{ if eq .Annotations.wiki "" -}}
Wiki: http://wiki.mycompany/{{ .Labels.alertname }}
{{- else -}}
Wiki: http://wiki.mycompany/{{ .Annotations.wiki }}
{{- end }}

Empty labels are the same as no labels, so this checks if the wiki annotation exists.
If it does, it is used as the name of the wiki page to link; otherwise, the name of the
alert is used. In this way you can have a sensible default that avoids you having to add
a wiki annotation to every single alerting rule, while still allowing customization if
you want to override it for one or two alerts. The {{- and -}} tell Go templates to
ignore whitespace before or after the curly braces, allowing you to spread templates
across multiple lines for readability without introducing extraneous whitespace in the
output:

{{ if ne .Annotations.dashboard "" -}}
Dashboard: {{ .Annotations.dashboard }}®ion={{ .Labels.region }}
{{- end }}

If a dashboard annotation is present, it will be added to your notification, and in
addition, the region will be added as a URL parameter. If you have a Grafana template
variable with this name, you will have it set to point to the right value. As discussed in
“External Labels” on page 323, alerting rules do not have access to the external labels
that usually contain things such as region, so this is how you can add architectural
details to your notifications without your alerting rules having to be aware of how
your applications are deployed.

The end result of this is a notification like the one shown in Figure 19-2. When using
chat-like notifiers and paging systems, it is wise for you to keep notifications brief.
This reduces the chances of your computer or mobile phone screen being overcome
with lengthy alert details, making it hard to get a basic idea of what is going on.
Notifications such as these should get you going on debugging by pointing to a
potentially useful dashboard and playbook that have further information, not try to
info dump everything that might be useful in the notification itself.

Configuration File | 341

13 Alertmanager configuration is expected to change relatively rarely, as your label structure shouldn’t change
that often. Alerting rules, on the other hand, tend to have ongoing churn and tweaks.

Figure 19-2. A customized Slack message

In addition to templating text fields, the destination of notifications can also be
templated. Usually each of your teams has their own part of the routing tree and
associated receivers. If another team wanted to send your team alerts, they would set
labels accordingly to use your team’s routing tree. For cases where you are offering
a service, particularly to external customers, having to define a receiver for every
potential destination could be a little tedious.13

Combining the power of PromQL, labels, and notification templating for alert desti‐
nations, you can go so far as to define a per-customer threshold and notification
destination in a metric and have the Alertmanager deliver to that destination. The
first step is to have alerts that include their destination as a label:

groups:
 - name: example
 rules:
 - record: latency_too_high_threshold
 expr: 0.5
 labels:
 email_to: foo@example.com
 owner: foo
 - record: latency_too_high_threshold
 expr: 0.7
 labels:
 email_to: bar@example.com
 owner: bar
 - alert: LatencyTooHigh

342 | Chapter 19: Alertmanager

14 Resolved alerts will have the annotations from the last firing evaluation of that alert.

 expr: |
 # Alert based on per-owner thresholds.
 owner:latency:mean5m
 > on (owner) group_left(email_to)
 latency_too_high_threshold

Here the different owners have different thresholds coming from a metric, which also
provides an email_to label. This is fine for internal customers who can add their own
latency_too_high_threshold to your rule file; for external customers you may have
an exporter exposing these thresholds and destinations from a database.

Then in the Alertmanager you can set the destination of the notifications based on
this email_to label:

global:
 smtp_smarthost: 'localhost:25'
 smtp_from: 'youraddress@example.org'

route:
 group_by: [email_to, alertname]
 receiver: customer_email

receivers:
- name: customer_email
 email_configs:
 - to: '{{ .GroupLabels.email_to }}'
 headers:
 subject: 'Alert: {{ .GroupLabels.alertname }}'

The group_by must include the email_to label that you are using to specify
the destination, because each destination needs its own alert group. The same
approach can be used with other notifiers. Note that anyone with access to
Prometheus or the Alertmanager will be able to see the destinations since labels
are visible to everyone. This may be a concern if some destination fields are
potentially sensitive.

Resolved notifications

All notifiers have a send_resolved field, with varying defaults. If it is set to true
then in addition to receiving notifications about when alerts fire, your notifications
will also include alerts that are no longer firing and are now resolved. The practical
effect of this is that when Prometheus informs the Alertmanager that an alert is now
resolved,14 a notifier with send_resolved enabled will include this alert in the next
notification, and will even send a notification with only resolved alerts if no other
alerts are firing.

Configuration File | 343

15 Alerting approaches to detect this are covered in “Meta- and Cross-Monitoring” on page 373, but the salient
point here is that you should be in a place where once an alert starts firing, it will get investigated.

16 They may move to per-route at some point (having them as a global setting increases the chances for an
inhibition to accidentally suppress more than was intended).

While it may seem handy to know that an alert is now resolved, we advise quite a
bit of caution with this feature as an alert no longer firing does not mean that the
original issue is handled. In “What Are Good Alerts?” on page 321 we mentioned
that responding to alerts with “it went away” was a sign that the alert should probably
not have fired in the first place. Getting a resolved notification may be an indication
that a situation is improving, but you as the on call still need to dig into the issue
and verify that it is fixed and not likely to come back. Halting your handling of
an incident because the alert stopped firing is essentially the same as saying “it
went away.” Because the Alertmanager works with alerts rather than incidents, it is
inappropriate to consider an incident resolved just because the alerts stopped firing.

For example, machine down alerts being resolved might only mean that the machine
running Prometheus has now also gone down. So while your outage is getting worse,
you are no longer getting alerts about it.15

Another issue with resolved notifications is that they can be a bit spammy. If they
were enabled for a notifier such as email or Slack, you could be looking at doubling
the message volume, thus halving your signal-to-noise ratio. As discussed in “Alerts
Need Owners” on page 318, using email for notifications is often problematic, and
more noise will not help with that.

If you have a notifier with send_resolved enabled, then in notification templat‐
ing, .Alerts can contain a mix of firing and resolved alerts. While you could filter
the alerts yourself using the Status field of an alert, .Alert.Firing will give you a
list of just the firing alerts, and .Alert.Resolved the resolved alerts.

Inhibitions
Inhibitions are a feature that allows you to treat some alerts as not firing if other alerts
are firing. For example, if an entire datacenter was having issues but user traffic had
been diverted elsewhere, there’s not much point in sending alerts for that datacenter.

Inhibitions currently16 live at the top level of alertmanager.yml. You must specify what
alerts to look for, what alerts they will suppress, and which labels must match between
the two:

344 | Chapter 19: Alertmanager

17 Using match_re in your routes makes it easier to have more specific severity labels like these, while still
handling all pages in one route. If the source alerts are not meant to result in notifications, that would be a
good use of a null receiver, as shown in “Receivers” on page 334.

inhibit_rules:
 - source_matchers:
 - severity = page-regionfail
 target_matchers:
 - severity = page
 equal: ['region']

Here, if an alert with a severity label of page-regionfail is firing, it will suppress
all your alerts with the same region label that have a severity label of page.17

Overlap between the source_match and target_match should be avoided since it can
be tricky to understand and maintain otherwise. Having different severity labels is
one way to avoid an overlap. If there is overlap, any alerts matching the source_match
will not be suppressed.

We recommend using this feature sparingly. With symptom-based alerting (as dis‐
cussed in “What Are Good Alerts?” on page 321) there should be little need for
dependency chains between your alerts. Reserve inhibition rules for large-scale issues
such as datacenter outages.

Alertmanager Web Interface
As you saw in “Alerting” on page 31, the Alertmanager allows you to view what alerts
are currently firing and to group and filter them. Figure 19-3 shows several alerts in
an Alertmanager grouped by alertname; you can also see all of the alerts’ other labels.

Alertmanager Web Interface | 345

Figure 19-3. Several alerts showing on the Alertmanager status page

From the status page you can click New Silence to create a silence from scratch, or
click the Silence link to prepopulate the silence form with the labels of that alert.
From there you can tweak the labels you want your silence to have. When working
with an existing alert you will usually want to remove some labels to cover more
than just that one alert. To help track silences you must also enter your name and a
comment for the silence. Finally, you should preview the silence to ensure it is not too
broad, as you can see in Figure 19-4, before creating the silence.

346 | Chapter 19: Alertmanager

Figure 19-4. Previewing a silence before creating it

If you visit the Silences page, you can see all silences that are currently active, the
ones that have yet to apply, and the silences that have expired and no longer apply (as
shown in Figure 19-5). From here you can also expire silences that no longer apply
and re-create silences that have expired.

Alertmanager Web Interface | 347

Figure 19-5. The Alertmanager Silences page showing the active silences

Silences stop alerts with the given labels from being considered as alerting for the
purposes of notification. Silences can be created in advance, if you know that main‐
tenance is going to happen and don’t want to pointlessly page the on call person,
for example. As the on call, you will also use silences to suppress alerts that you’ve
already known about for a while, so you are not disturbed while investigating. You
can think of a silence like the snooze button on an alarm clock. When creating a
silence, you have to enter a comment, which you can use to state the reason of the
silence, so it is not forgotten or misunderstood.

If you want to stop alerts at a set time every day, you should not do so with silences,
rather add a condition to your alerts that the hour function returns the desired value,
as shown in “Alerting Rules” on page 312.

Now that you have seen all the key components of Prometheus, it is time to consider
how they all fit together at a higher level. In the next chapter you will learn how to
plan a deployment of Prometheus.

348 | Chapter 19: Alertmanager

PART VI

Deployment

Playing around with Prometheus on your own machine is one thing, deploying it on
a real production system is a different kettle of fish.

Chapter 20 covers the built-in server-side security features available to secure your
Prometheus server. Chapter 21 looks at the practicalities of running Prometheus in
production and how to approach rolling it out.

CHAPTER 20

Server-Side Security

In this chapter, you will learn about security features provided by Prometheus, such
as TLS and Basic Authentication.

Security Features Provided by Prometheus
When operating Prometheus, many operators choose to use a reverse proxy to secure
its endpoints. Indeed, the Prometheus server APIs are exposed over HTTP, which
makes them easy to integrate into any HTTP-capable reverse proxy.

Prometheus itself supports server-side security, making it possible to either directly
expose a secured version of Prometheus to the users or secure the traffic between
Prometheus and these reverse proxies.

Server-side security as described in this chapter applies to the Prometheus server
and most of the official exporters. The same command-line flags and options can be
shared between these, so what follows applies to more than just Prometheus.

The options described in this chapter require a dedicated file, whose path can be
passed as --web.config.file. On each request, the file is read, which means that it is
not needed to reload Prometheus or the exporter to apply changes.

Enabling TLS
TLS is widely used in the network area to secure communications between clients
and servers. Without going into too much detail, TLS enables the client to validate
that the server they connect to is recognized by a known certificate authority (CA),
and then encrypt the subsequent traffic. It is also possible to use TLS to authenticate
clients by forcing them to also present a valid TLS certificate when connecting to the
server.

351

To enable TLS on a Prometheus instance, you need to start by getting some certifi‐
cates. In this example, we are using self-signed certificates. However, in real-world
deployments, you should use your company’s internal CA or public CA like Let’s
Encrypt, which will be directly recognized by your users.

First, create a self-signed CA with OpenSSL:

$ openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 \
 -keyout prometheus.key -out prometheus.crt \
 -subj "/CN=localhost" -addext "subjectAltName = DNS:localhost"

This command created two files: prometheus.key and prometheus.crt.

To enable TLS with the certificate and private key you have just generated, create a
web.yml file with the content shown in Example 20-1.

Example 20-1. web.yml

tls_server_config:
 cert_file: prometheus.crt
 key_file: prometheus.key

You can check the validity of web configuration files with prom
tool:

$./promtool check web-config web.yml
web.yml SUCCESS

Then, you can launch Prometheus with this file, using the following command:

$./prometheus --web.config.file web.yml

You can now access Prometheus with TLS using the following command:

$ curl --cacert prometheus.crt https://127.0.0.1:9090/metrics

As Prometheus usually scrapes itself, the scrape configuration will also need to be
adapted in the main prometheus.yml, as in Example 20-2.

Example 20-2. prometheus.yml

scrape_configs:
 - job_name: 'prometheus'
 scheme: https
 tls_config:
 ca_file: prometheus.crt
 static_configs:
 - targets: ['localhost:9090']

352 | Chapter 20: Server-Side Security

1 Elliptic Curve Diffie-Hellman Ephemeral

Do not forget to reload the Prometheus configuration after adapting the scrape
configuration, if needed:

$ killall -HUP prometheus

Advanced TLS Options
The TLS configuration of Prometheus offers other settings. In particular, you set
client authentication with the settings shown in Example 20-3.

Example 20-3. web.yml

tls_server_config:
 client_auth_type: RequireAndVerifyClientCert
 client_ca_file: client_ca.crt

Other available settings include:

• min_version and max_version, which describe the minimum and maximum•
TLS version negotiated by the server. The versions are named TLS10, TLS11,
TLS12, and TLS13, respectively, for TLS 1.0, 1.1, 1.2, and 1.3.

• cipher_suites, which describes the cipher suite used by the server. This option•
does not affect TLS 1.3.

• prefer_cipher_suites, which controls whether the server selects the client’s•
most preferred cipher suite, or the server’s most preferred cipher suite.

• curve_preferences, which lists the elliptic curves that will be used in an•
ECDHE1 handshake, in preference order.

These configuration settings allow you to have complete control of the underlying
TLS library.

Prometheus comes with secure default for those settings. It is
unwise to change them if you don’t know what you are doing as
you could inadvertently compromise your security.

Advanced TLS Options | 353

Enabling Basic Authentication
Basic Authentication mandates that every request made to a Prometheus server needs
to be authenticated by a username and a password. It works by providing a list of
users and hashed passwords to Prometheus, then validates every incoming request
against that list.

Advanced authorization mechanisms such as restricting which pages a user can see
or using other sources of users, such as OAuth or LDAP, are not supported by
Prometheus. If you need to use such fine-grained settings, you have to put a reverse
proxy in front of Prometheus. Thanks to TLS and Basic Authentication, you could
make the reverse proxy authenticate itself on the backend, therefore still securing
your Prometheus server while doing appropriate user management on the proxy.

Passwords are not provided in the Prometheus configuration as clear text. They are
hashed, which means that if someone gets access to the configuration file, they will
not be able to easily find out the password. Bcrypt is the password hash mechanism
used by Prometheus.

Basic Authentication sends the password in clear text in the HTTP
headers. To prevent password interception, we highly recommend
you use TLS to encrypt the traffic between the client and the server.

To add a user to our Prometheus server and enable Basic Authentication, the first
step is to generate the hash for their password. Let’s use htpasswd for this, but other
tools are available as well:

$ htpasswd -nBC 10 "" | tr -d ':\n'
New password:
Re-type new password:
$2y$10$LbwE6OVsPc4PqDFaYwvw/uOkMMficVQrQjtY5KT/BGnAKPa0vK45C

In this example, the password I have chosen is demo.

10 is the bcrypt cost. Usually, the cost used should be between
10 and 12, with current computing power. Increasing this number
will likely increase the security of the password at the expense of
compute resources.

You can now use this password to update your web.yml file, as shown in
Example 20-4.

354 | Chapter 20: Server-Side Security

Example 20-4. web.yml

tls_server_config:
 cert_file: prometheus.crt
 key_file: prometheus.key
basic_auth_users:
 julien: $2y$10$LbwE6OVsPc4PqDFaYwvw/uOkMMficVQrQjtY5KT/BGnAKPa0vK45C

You have configured a user julien with a password demo, in a Prometheus server
protected with a TLS certificate. To use the credentials, open http://127.0.0.1:9090
in your web browser. A prompt should ask for the username and password—enter
julien and demo. You should get access to the web interface of your Prometheus
server.

Prometheus itself will need to be configured to scrape itself using Basic Authentica‐
tion, as in Example 20-5.

Example 20-5. prometheus.yml

scrape_configs:
 - job_name: 'prometheus'
 scheme: https
 tls_config:
 ca_file: prometheus.crt
 basic_auth:
 username: julien
 password: demo
 - targets: ['localhost:9090']

You can also pass a username using cURL:

$ curl --cacert prometheus.crt -u julien:demo https://127.0.0.1:9090/metrics

Now that you’ve learned how to secure your Prometheus server, we’ll explore deploy‐
ing it in a production environment in the upcoming chapter.

Enabling Basic Authentication | 355

http://127.0.0.1:9090

1 A rollout is the process of releasing a new version of a software application or system to users.
2 If you are on Windows, use the Windows Exporter instead of the Node Exporter.

CHAPTER 21

Putting It All Together

In the preceding chapters you learned about all the components in a Prometheus
setup: instrumentation, dashboards, service discovery, exporters, PromQL, alerts,
and the Alertmanager. In this final chapter you will learn how to bring all of these
together and plan a Prometheus deployment and maintain it in the future.

Planning a Rollout
When you are considering a new technology, it’s best to start the rollout1 with
something small that doesn’t take too much effort, nor prematurely commit you to
doing a complete rollout. When starting with Prometheus in an existing system, we
recommend you start by running the Node Exporter2 and Prometheus. You already
ran both of these in Chapter 2.

The Node Exporter covers all the machine-level metrics that might be used from
other monitoring systems, and then quite a few more, as was covered in Chapter 7.
At this stage you will have a wide variety of metrics for little effort, and you should
get comfortable with Prometheus, set up some dashboards, and maybe even do some
alerting.

Next, we’d suggest looking at what third-party systems you are using and which
exporters exist for them and start deploying those. For example, if you have network
devices, you can run the SNMP Exporter; if you have JVM-based applications such
as Kafka or Cassandra, you would use the JMX Exporter; and if you want blackbox
monitoring, you might use the Blackbox Exporter, as covered in Chapter 10. The goal

357

3 We continue to be amazed by the seductive power of a pretty dashboard, especially over other factors such
as if the metrics in the dashboard are in any way useful. Do not underestimate this when trying to convince
others to use Prometheus.

at this stage is to gain metrics about as many different parts of your system as you can
with as little effort as possible.

By now you will be comfortable with Prometheus, and will have figured out your
approach to aspects such as service discovery, as discussed in Chapter 8. You could
have done all the previous steps of the rollout alone. The next step is to start
instrumenting your organization’s own applications, as covered in Chapter 3, which
will likely involve asking other people to also get involved and commit time to
monitoring. Being able to demonstrate all of the monitoring and dashboards3 you
have set up so far (which are backed by exporters) will make it quite a bit easier to
sell others on using Prometheus; extensively instrumenting all your code as step one
would be unlikely to get buy-in.

As before, when adding instrumentation you want to start with metrics that give
you the biggest gains. Look for chokepoints in your applications that significant
proportions of traffic go through. For example, if you have common HTTP libraries
that all of your applications use to communicate with each other and you instrument
them with the basic RED metrics, as covered in “Service instrumentation” on page
57, you will get the key performance metrics for large swaths of your online serving
systems from just one instrumentation change.

If you have existing instrumentation from another monitoring system, you can
deploy integrations such as the StatsD and Graphite Exporters, discussed in Chap‐
ter 11, to take advantage of what you already have. Over time you should look to not
only transition entirely to Prometheus instrumentation, as covered in Chapter 3, but
also to further instrument your applications.

As your usage of Prometheus grows to cover more and more of your monitoring and
metrics-monitoring needs, you should start turning down other monitoring systems
that are no longer needed. It’s not unusual for a company to end up with 10+ different
monitoring systems over time, so consolidating where practical is always beneficial.

This plan is a general guideline, which you can and should adapt to your circumstan‐
ces. For example, if you are a developer you might jump straight to instrumenting
your applications. You might even add a client library to your application with no
instrumentation yet in order to take advantage of the out-of-the-box metrics such as
CPU usage and garbage collection.

358 | Chapter 21: Putting It All Together

4 Monitoring across failure domain boundaries, such as across datacenters, is possible but messy as you
introduce a whole slew of network-related failure modes. If you have hundreds of tiny datacenters with only a
handful of machines each, one Prometheus per region/continent can be an acceptable trade-off.

Growing Prometheus
Usually you start out with one Prometheus server per datacenter. Prometheus is
intended to be run on the same network as what it is monitoring, because this
reduces the ways in which things can fail, aligns failure domains, and provides low-
latency, high-bandwidth network access to the targets that Prometheus is scraping.4

A single Prometheus is quite efficient, so you can likely get away with one Prome‐
theus for an entire datacenter’s monitoring needs for longer than you’d think. At
some point though, operational overhead, performance, or just social considerations
will lead you to start splitting out parts of the Prometheus to separate Prometheus
servers. For example, it is common to have separate Prometheus servers for network,
infrastructure, and application monitoring. This is known as vertical sharding and it
is the best way to scale Prometheus.

Longer term, you may have every team run their own Prometheus servers, empower‐
ing them to choose what target labels and scrape intervals make sense for them (as
discussed in Chapter 8). You could also run the servers for teams as a shared service,
but you must be prepared for teams getting overenthusiastic with labels.

A pattern Brian has seen play out many times is that when starting out it is a struggle
to convince teams that they should instrument their own code or deploy exporters. At
some point though, it’ll click, and they will understand the power of labels. Within a
short period of time you will likely find that your Prometheus server has performance
issues due to metrics with a cardinality that is far beyond what it is reasonable to
use in a metrics-based monitoring system (as discussed in “Cardinality” on page 99).
If you are running Prometheus as a shared service and the team consuming these
metrics is not the one getting paged, it can be difficult to convince them that they
need to cut back on cardinality. But if they run their own Prometheus and are the
ones getting woken up at 3 a.m., they are likely going to be more realistic about
what belongs in a metrics-based monitoring system and what belongs in a logs-based
system.

If your team has particularly large systems, they may end up with multiple Prome‐
theus servers per datacenter. An infrastructure team may end up with one Prome‐
theus for Node Exporters, one for reverse proxies, and one for everything else. For
ease of management, it is normal to run Prometheus servers inside each of your
Kubernetes clusters rather than trying to monitor them from outside.

Growing Prometheus | 359

5 For example, it is sane only to have one target label hierarchy within a Prometheus. If a team has a different
idea of what a region is than everyone else, they should run their own Prometheus.

Where you start and end up on this spectrum of setups will depend on your scale and
the culture within your organization. It is our experience that social factors5 usually
result in Prometheus servers being split out before any performance concerns arise.

Going Global with Federation
With a Prometheus per datacenter, how do you perform global aggregations?

Reliability is a key property of a good monitoring system, and a core value of
Prometheus. When it comes to graphing and alerting, you want as few moving parts
as possible because a simple system is a reliable system. When you want a graph
of application latency in a datacenter, you have Grafana talk to the Prometheus
in that datacenter that is scraping that application, and similarly for alerting on
per-datacenter application latency.

This doesn’t quite work for global latency, since each of your datacenter Prometheus
servers only has a part of the data. This is where federation comes in. Federation
allows you to have a global Prometheus that pulls aggregated metrics from your
datacenter Prometheus servers, as shown in Figure 21-1.

Figure 21-1. Global federation architecture

For example, to pull in all metrics aggregated to the job level, you could have a
prometheus.yml like:

360 | Chapter 21: Putting It All Together

6 The /federate endpoint automatically includes an empty instance label in its output for any metrics lacking an
instance label, in the same way the Pushgateway does, as mentioned in “Pushgateway” on page 76.

scrape_configs:
 - job_name: 'federate'
 honor_labels: true
 metrics_path: '/federate'
 params:
 'match[]':
 - '{__name__=~"job:.*"}'
 static_configs:
 - targets:
 - 'prometheus-dublin:9090'
 - 'prometheus-berlin:9090'
 - 'prometheus-new-york:9090'

The /federate HTTP endpoint on Prometheus takes a list of selectors (covered in
“Selectors” on page 235) in match[] URL parameters. It will return all matching time
series following instant vector selector semantics, including staleness, as discussed in
“Instant Vector” on page 237. If you supply multiple match[] parameters, a sample
will be returned if it matches any of them. To avoid the aggregated metrics having
the instance label of the Prometheus target, honor_labels (which was discussed in
“Label Clashes and honor_labels” on page 166) is used here.6 The external labels of
the Prometheus (as discussed in “External Labels” on page 323) are also added to the
federated metrics, so you can tell where each time series came from.

Unfortunately, some users use federation for purposes other than
pulling in aggregated metrics. To avoid falling into this trap, you
should understand the following:

• Federation is not for copying the content of entire Prometheus•
servers.

• Federation is not a way to have one Prometheus proxy another•
Prometheus.

• You should not use federation to pull metrics with an•
instance label.

Let us explain why you should not use federation beyond its intended use case. First,
for reliability you want to have as few moving parts as is practical. Pulling all your
metrics over the internet to a global Prometheus from where you can then graph
and alert on them means that internet connectivity to another datacenter is now a
hard dependency on your per-datacenter monitoring working. In general, you want
to align your failure domains, so that graphing and alerting for a datacenter do not
depend on another datacenter being operational. That is, as far as is practical you

Going Global with Federation | 361

7 Let’s say that you were aggregating up every metric from an application with a hundred instances and a global
Prometheus was pulling these aggregated metrics. For the same resources that a datacenter Prometheus uses,
the global Prometheus could federate metrics from a hundred datacenters. In reality the global Prometheus
can handle far more, as not all metrics would be aggregated.

8 There are no exact numbers, but we would consider 10,000 time series as starting to get large.

want the Prometheus that is scraping a set of targets to also be the one sending alerts
for that target. This is particularly important if there is a network outage or partition.

The second issue is scaling. For reliability, each Prometheus is standalone and run‐
ning on one machine and thus limited by machine size in terms of how much it can
handle. Prometheus is quite efficient, so even limited to a single machine, it is quite
plausible for you to have a single Prometheus server monitor an entire datacenter.
As you add datacenters you just need to turn up a Prometheus in each of them.
A global Prometheus pulling in only aggregated metrics will have greatly reduced
cardinality data to deal with compared with the datacenter Prometheus servers,7 and
thus will prevent bottlenecks. Conversely, if the global Prometheus was pulling in all
metrics from each datacenter Prometheus, the global Prometheus would become the
bottleneck and greatly limit your ability to scale. Put another way, for federation to
scale you need to use the same approach discussed in “Reducing Cardinality” on page
300 for dashboards.

Thirdly, Prometheus is designed to scrape many thousands of small to medium size
targets.8 By spreading the scrapes over the scrape interval, Prometheus can keep up
with the data volumes with even load. If you instead have it scrape a handful of tar‐
gets with massive numbers of time series, such as massive federation endpoints, this
can cause load spikes and it may not even be possible for Prometheus to complete
processing of one massive scrape worth of data in time to start the next scrape.

The fourth issue is semantics. By passing all the data through an extra Prometheus,
additional race conditions will be introduced. You would see increased artifacts
in your graphs, and you would not get the benefit of the staleness handling the
semantics.

One objection to this architecture is if all your metrics don’t end up in one Prome‐
theus, how will you know which Prometheus contains a given metric? This turns out
not to be an issue in practice. As your Prometheus servers will tend to follow your
general architecture, it is usually quite obvious which Prometheus monitors which
targets and thus which has a specific metric. For example, Node Exporter metrics for
Dublin are going to be in the Dublin infrastructure Prometheus. Grafana supports
both data source templating and having graphs with metrics from different data
sources on them, so this is not an issue for dashboards either.

Usually you will only have a two-level federation hierarchy with datacenter Prome‐
theus servers and globals. The global Prometheus will perform calculations with

362 | Chapter 21: Putting It All Together

9 Indeed, Brian has heard various different monitoring systems report that around 90% of metrics data is not
used after the first 24 hours. The problem, of course, is knowing in advance which 90% you’ll never need
again.

PromQL that you cannot do in a lower-level Prometheus, such as how much traffic
you are receiving globally.

It is also possible that you will end up with an additional level. For example, it’s
normal to run a Prometheus inside each Kubernetes cluster you have. If you had
multiple Kubernetes clusters in a datacenter, you might federate their aggregated
metrics to a per-datacenter Prometheus before then federating them from there to
your global Prometheus.

Another use for federation is to pull limited aggregated metrics from another team’s
Prometheus. It is polite to ask first, and if this becomes a common or more formal
thing, the considerations in “Rules for APIs” on page 302 may apply. There is no
need to do this just for dashboards though, as Grafana supports using multiple data
sources in a dashboard and in a panel.

Long-Term Storage
In “What Is Monitoring?” on page 4 we mentioned that monitoring was alerting,
debugging, trending, and plumbing. For most alerting, debugging, and plumbing,
days to weeks of data is usually more than enough.9 But when it comes to trending,
such as capacity planning, it’s usual for you to want years of data.

One approach to long-term storage is to treat Prometheus like a traditional database
and take regular backups that you can restore from in the event of failure. A Prome‐
theus ingesting 10,000 samples per second with a conservative 2 bytes per sample
would use a bit under 600 GB of disk space per year, which would fit on a modern
machine.

Backups can be taken by sending an HTTP POST to the /api/v1/admin/tsdb/snapshot
endpoint, which will return the name of the snapshot created under Prometheus’s
storage directory. This uses hard links, so it doesn’t consume much additional disk
space as the data is stored only once between the snapshot and Prometheus’s own
database. After you are done with a snapshot, it is best to delete it to avoid using more
disk space than is needed. To restore from a snapshot, replace the Prometheus storage
directory with the snapshot.

Only a tiny proportion of your metrics will be interesting to you for long-term
trending, usually the aggregated metrics. It’s usually not worth keeping everything
forever, so you can save a lot of storage space by only keeping metrics from a global
Prometheus long term10 or deleting nonaggregated metrics before a certain time.

Long-Term Storage | 363

10 As discussed in “Going Global with Federation” on page 360, the global Prometheus will only have aggregated
metrics.

11 This works in the same way as the match[] URL parameter for federation.
12 Usually a multiweek cache.

The /api/v1/admin/tsdb/delete HTTP endpoint takes selectors in its match[] URL
parameter11 and has start and end parameters to restrict the time range. Data will be
deleted from disk at the next compaction. It would be reasonable to delete old data,
say, once a month.

For security reasons, both the snapshot and delete APIs require the --web.enable-
admin-api flag to be passed to Prometheus for them to be enabled.

Another approach is to send your samples from Prometheus to some form of clus‐
tered storage system that can use the resources of many machines. Remote write
sends samples as they are ingested to another system. Remote read allows PromQL to
transparently use samples from another system, as if they were stored locally within
the Prometheus. These are both configured at the top level of prometheus.yml:

remote_write:
 - url: http://localhost:1234/write
remote_read:
 - url: http://localhost:1234/read

Remote write supports relabeling through write_relabel_configs, which works
similarly to what you saw in “metric_relabel_configs” on page 164. Your main use of
this would be to restrict what metrics are sent to the remote write endpoint, as you
may find yourself limited by cost. From a bandwidth and memory standpoint, you
should take care when pulling in large numbers of time series from long time periods
via remote read. When using remote write it is important that each Prometheus has
unique external labels so that metrics from different Prometheus servers don’t clash.

One way to use remote read and write would be to consider Prometheus as a largely
ephemeral cache, and the remote storage as the main storage.12 If Prometheus is
restarted with an empty data store, you would rely on remote read for historical
graphs. You would also design your alerts to be resilient under such a restart, which is
a good idea in any case.

There are many projects that integrate with Prometheus Remote Write. On the open
source side, it is worth mentioning CNCF’s Thanos, CNCF’s Cortex, and Grafana
Mimir, which use part of the Prometheus code as a library and use S3-compatible
storage as a backend. Those systems are distributed, multitenant, and popular in the
Prometheus community.

364 | Chapter 21: Putting It All Together

13 For Prometheus 1.x, use the prometheus_local_storage_ingested_samples_total metric instead.

When evaluating your options, keep in mind that a load that would
be considered light for a single Prometheus server may exceed
what another system running across many machines can handle.
It is always wise to load test systems based on your own use case
rather than relying on headline numbers, as different systems are
designed with different data models and access patterns in mind.
Simpler solutions can turn out to be both more efficient and easier
to operate. Clustered does not automatically mean better.

You should expect clustered storage systems to cost at least five times what the
equivalent Prometheus would cost for the same load. This is because most systems
will replicate the data three times, plus have to take it in and process all the data. Thus
you should be judicious about what metrics you keep only locally and which ones are
sent to clustered storage.

Prometheus features an experimental agent mode that can be
enabled using the --enable-feature=agent flag. When using this
mode, Prometheus is optimized for Remote Write scenarios, and
data is only stored locally until it is transmitted to the Remote
Write. Please be aware that while using agent mode, you will not
be able to perform local recording rules or querying the data in
Prometheus. This agent mode uses less resources compared to the
server mode, making it a more lightweight solution for certain use
cases.

Running Prometheus
When it comes to actually running the Prometheus server, you will have to consider
hardware, configuration management, and how your network is set up.

Hardware
The first question you will probably ask when it comes to running Prometheus is
what hardware Prometheus needs. Prometheus is best run on SSDs, though they are
not strictly necessary on smaller setups. Storage space is one of the main resources
you need to care about. To estimate how much you’ll need, you have to know how
much data you will be ingesting. For an existing Prometheus13 you can run a PromQL
query to report the samples ingested per second:

rate(prometheus_tsdb_head_samples_appended_total[5m])

Running Prometheus | 365

14 The retention size might not take into account blocks being compacted, so it is best to not set it at 100%
of your storage capacity. Using size-based retention also means that you don’t know how far in the past
Prometheus will keep the data as your number of time series grows. In this case, the TSDB metric prome
theus_tsdb_lowest_timestamp can be handy in alerting rules.

While Prometheus can achieve compression of 1.3 bytes per sample in produc‐
tion, when estimating we tend to use 2 bytes per sample to be conservative.
The default retention for Prometheus is 15 days, so 100,000 samples per second
would be around 240 GB over 15 days. You can increase the retention with the
--storage.tsdb.retention.time flag, and control where Prometheus stores data
with the --storage.tsdb.path flag. You can also decide to limit the size of the
TSDB with --storage.tsdb.retention.size.14 There is no particular filesystem
recommended or required for Prometheus, and many users have had success using
network block devices such as Amazon EBS. However NFS, including Amazon EFS,
is explicitly not supported by Prometheus because Prometheus expects a POSIX
filesystem, and NFS implementations have never really had a reputation for offering
exact POSIX semantics. Each Prometheus needs its own storage directory; you can‐
not share one storage directory across the network.

The next question is how much RAM you will need. The storage in Prometheus 2.x
works in blocks that are written out every two hours and subsequently compacted
into larger time ranges. The storage engine does no internal caching, rather it uses
your kernel’s page cache. So you will need enough RAM to hold a block, plus
overheads, plus the RAM used during queries. A good starting point is 12 hours
worth of sample ingestion, so for 100,000 samples per second that would be around
8 GB.

Prometheus is relatively light on CPU. A quick benchmark on our machine (which
has an i7-3770k CPU) shows only 0.25 CPUs being used to ingest 100,000 samples
per second. But that is just ingestion—you will want additional CPU power to cover
querying and recording rules. Due to CPU spikes from Go’s garbage collection, you
should always have at least one core more than you think you need.

Network bandwidth is another consideration. Prometheus 2.x can handle ingesting
millions of samples per second, which is similar to the one-machine limit of many
other similar systems. Prometheus usually uses compression when scraping, so it uses
somewhere around 20 bytes of network traffic to transfer a sample. With a million
samples per second, that’s 160 Mbps of network traffic. That is a good chunk of a
gigabit network card, which may be all you have for an entire rack of machines.

Another resource to keep in mind is file descriptors. We could give you the equation
and factors, but these days file descriptors are not a scarce resource, so we’d say set
your file ulimit to a million and not worry about it.

366 | Chapter 21: Putting It All Together

15 Windows users can use HTTP instead of SIGTERM and SIGHUP, which requires the --web.enable-lifecycle
flag to be specified.

16 Such a system actually exists, mixtool server, but it is highly experimental.

Ulimit changes for file descriptors have an annoying habit of not
applying, depending on how exactly you start a service. Prome‐
theus logs the file ulimit at startup, and you can also check the
value of process_max_fds on /metrics.

These numbers are just starting points. You should benchmark and verify these
against your setup. We would generally recommended leaving room for your Prome‐
theus to double in terms of resource usage to give you time to get new hardware as
you grow, and it also gives you a buffer to deal with sudden cardinality increases.

Configuration Management
Prometheus does one thing and does it well—that being metrics-based monitoring.
Prometheus does not try to fulfill the role of configuration management, secret
management, or service database. To that extent, Prometheus aims to get out of your
way and allow you to use standard configuration management approaches, rather
than forcing you to learn and work around some Prometheus-specific configuration
management contrivance.

If you do not yet have a configuration management tool, we would recommend
Ansible for more traditional environments. For Kubernetes, Pulumi looks promising,
but there are literally tens of tools in this space.

Just because Prometheus allows for standard approaches does not mean it will auto‐
matically work perfectly in your environment. Being generic means avoiding the
temptation to cater to platform-specific nuances. It means that if you have a mature
setup, Prometheus should be quite easy to deploy. You could view Prometheus as a
maturity test for your configuration management, because Prometheus is a standard
Unix binary that works in the ways you’d expect. It accepts SIGTERM, SIGHUP, logs to
standard error, and uses simple text files for configuration.15

For example, Prometheus rule files (discussed in Chapter 17) can only come from
files on disk. If you want to have an API where you can submit rules, there is nothing
stopping you from building such a system,16 and having it output the rule files in
standard YAML format. Prometheus does not offer such an API itself, as how, for
example, would you ensure Prometheus had rules immediately after a reboot? By
only offering files on disk, you will find debugging is simpler since you know exactly
what input Prometheus is working from. Those with simpler setups don’t have to
worry about more intricate configuration management concepts, and those who wish

Running Prometheus | 367

https://oreil.ly/Dqc2B
https://oreil.ly/TwdL-

17 To avoid confusion, systems like Docker, Docker Compose, and Kubernetes are not configuration manage‐
ment systems; they are potential outputs for a configuration management system.

18 Part of the gettext library.

to do something fancier have an interface that permits them to do whatever they like.
Put another way, the cost of more complex and nonstandard setups is borne by those
with such setups, not by everyone else.

In simpler setups you can get away with having a static prometheus.yml. But as
you expand you will need to template it using your configuration management
system, at a minimum to specify a different external_labels per Prometheus, as
Prometheus itself has no templating abilities for configuration files. If you haven’t
fully progressed to having a configuration management system yet,17 some runtime
environments can provide environment variables to the applications running under
them. You could use tools like sed or envsubst18 to do rudimentary templating.
On the far end of sophistication you have tools like the Prometheus Operator from
Prometheus-Community (briefly mentioned in Chapter 9), which will completely
manage not only your configuration file but also your Prometheus server running on
Kubernetes.

In Chapter 10 we mentioned that exporters should live right beside the application
they are exporting metrics from. You should take the same approach with any
daemons that provide configuration data for Prometheus, such as if you are using
file service discovery (discussed in “File” on page 142). By having such daemons
run beside each Prometheus, you will only be affected by the machine running
Prometheus having issues, and not other machines that you are relying on to provide
key functionality.

If you want to test changes to your Prometheus configuration, you can easily spin up
a test Prometheus with the new configuration. Since Prometheus is pull-based, your
targets don’t have to know or care about what is monitoring them. When doing this
it would be wise to remove any Alertmanagers or remote write endpoints from the
configuration file.

Networks and Authentication
Prometheus is designed with the idea that it is on the same network as the targets it is
monitoring, and can contact them directly over HTTP and request their metrics. This
is known as pull-based monitoring, and comes with advantages such as up indicating
if a scrape worked, being able to run a test Prometheus without having to configure
all your targets to push to it, and more tactical options for handling sudden load
increases, as covered in “Managing Performance” on page 374.

368 | Chapter 21: Putting It All Together

19 For the same reasons that you want to run a StatsD Exporter per application instance, rather than one per
datacenter.

If you have a network setup where there is NAT or a firewall in the way, you should
try to run a Prometheus server behind it so that it can directly access the targets.
There are also options like PushProx, SSH tunnels, or having Prometheus use a proxy
via the proxy_url configuration field.

Do not try to use the Pushgateway to work around network archi‐
tecture, or more generally to try to convert Prometheus to a push-
based system.

As was already covered in “Pushgateway” on page 76, the Pushgateway is for service-
level batch jobs to push metrics to once just before they exit. It is not designed for
application instances to regularly push metrics to, and you should never be pushing
metrics that end up with an instance label to the Pushgateway. Trying to use the
Pushgateway in this fashion will create a bottleneck,19 the timestamps of the samples
will not be correct (which will lead to graph artifacts), and you lose the up metric so
it’s harder to distinguish whether a process has died on purpose or due to a failure.
The Pushgateway also has no logic to expire old data, because for service-level batch
jobs for which the last run of a cronjob was a month ago doesn’t change the validity of
the last success time metric that cronjob pushed.

Pull is at the very core of Prometheus; work with it rather than against it.

Prometheus offers some service-side security support, as described in Chapter 20. It
is, however, common to secure Prometheus behind a reverse proxy, which enables
more flexibility or more functionalities, such as native Let’s Encrypt support, which is
out of scope for the Prometheus server. That would usually be using a reverse proxy
such as Traefik, Caddy, nginx, or httpd, which offer a wide range of security-related
features. You may also want the reverse proxy to block access to the admin and
lifecycle endpoints to protect against Cross-Site Request Forgery (XSRF), and use
HTTP headers to protect against Cross-Site Scripting (XSS).

When running Prometheus behind a reverse proxy, you should pass Prometheus
the URL under which it is available via the --web.external-url flag, so that the
Prometheus UI and the generator URL in alerts work correctly. If your reverse proxy
changes the HTTP path before sending it on to Prometheus, set the --web.route-
prefix flag to the prefix of the new paths.

Running Prometheus | 369

https://oreil.ly/nq_fp
https://traefik.io/traefik
https://caddyserver.com
https://nginx.org
https://httpd.apache.org

Like Prometheus, the Alertmanager also has --web.external-url
and --web.route-prefix flags.

While Prometheus and the Alertmanager don’t support authentication for serving,
they do support it for talking to other systems, including alerting, notification, most
service discovery mechanisms, remote read, remote write, and scraping, as was cov‐
ered in “How to Scrape” on page 162.

Planning for Failure
In distributed systems, failure is a fact of life. Prometheus does not take the path of
attempting a clustered design to handle machine failures, since such designs are very
tricky to get right and turn out to be less reliable than nonclustered solutions more
often than you’d expect. Nor does Prometheus attempt to backfill data if a scrape
failed. If the scrape failure was due to overload, backfilling when load goes back down
a bit could only cause the overload to happen again. It’s better when monitoring
systems have predictable load and don’t exacerbate outages.

Due to the preceding design, if a scrape fails, up will be 0 for that scrape, and you
will have a gap in your time series. But this is not something you should worry about.
You will not care about the vast majority of your samples, gaps included, a week after
they are collected (if not sooner). For monitoring, Prometheus takes the stance that
it’s more important that your monitoring is generally reliable and available, rather
than 100% accurate. For metrics-based monitoring, 99.9% accuracy is fine for most
purposes. It is more useful for you to know that latency increased by a millisecond
than whether that increase was to 101.2 or 101.3 milliseconds rate is resilient to the
occasional failed scrape, as long as your range is at least four times the scrape interval,
as discussed in “rate” on page 289.

When discussing reliability, the first question you should ask is how reliable do you
need your monitoring to be? If you are monitoring a system that has a 99.9% SLA,
then there’s no point spending your time and effort designing and maintaining a
monitoring system that will be 99.9999% available. Even if you could build such a
system, neither the internet connections that your users use nor the response of the
humans who are on call are that reliable.

Taking an example, in Europe it is common to use SMS for paging as it is generally
fast, cheap, and reliable. However, for a few hours every year it grinds to a halt when
the entire country wishes each other Happy New Year, which makes it at most 99.95%
reliable over a year. You can have contingencies in place to handle things like this, but
as you try backup paging devices and escalating to the secondary on call, the minutes
are ticking away. As mentioned in “for” on page 314, if you have an issue that requires

370 | Chapter 21: Putting It All Together

20 For this reason we recommend you design your critical alerts to be up and running in a fresh Prometheus
within an hour, if not sooner.

21 If using network storage such as Amazon EBS, the Prometheus may even continue on with the data of the
previous run.

a resolution in under 5 minutes, you should automate it rather than hope your on call
engineers will be able to handle it in time.

In this context we’d like to talk about reliable alerting. If a Prometheus dies for some
reason, you should have it automatically restart, and disruption should be minimal
beyond for state resetting (as discussed in “for” on page 314).20 But if the machine
Prometheus is on dies and Prometheus cannot restart, you won’t have alerts until you
replace it. If you are using a cluster scheduler such as Kubernetes, you can expect
this to happen promptly, which may well suffice.21 If replacement is a more manual
process, this probably won’t be acceptable.

The good news is that you can easily make alerting more reliable by eliminating the
single point of failure (SPOF). If you run two identical Prometheus servers, then
as long as one of them is running you will have alerts, and the Alertmanager will
automatically deduplicate the alerts because they will have identical labels.

As mentioned in “External Labels” on page 323, every Prometheus should have
unique external labels, so to maintain that constraint you can use alert_relabel_con
figs (as discussed in “Configuring Alertmanagers in Prometheus” on page 322):

global:
 external_labels:
 region: dublin1
alerting:
 alertmanagers:
 - static_configs:
 - targets: ['localhost:9093']
 alert_relabel_configs:
 - source_labels: [region]
 regex: (.+)\d+
 target_label: region

This will remove the 1 from dublin1 before sending the alert to the Alertmanager.
The second Prometheus would have a region label of dublin2 as an external label.

I’ve mentioned now a few times that external labels should be unique across all your
Prometheus servers. This is so that if you have multiple Prometheus servers in a
setup like the preceding one and you are either using remote write or federation from
them, the metrics from the different Prometheus servers won’t clash. Even in perfect
conditions, different Prometheus servers will see slightly different data, which could
be misinterpreted as a counter reset, for example. In less optimal conditions, such

Planning for Failure | 371

22 Global Prometheus servers are at the top of the federation hierarchy, so nothing generally federates from
them.

as a network partition, each of your redundant Prometheus servers could see wildly
different information.

This brings me to the question of reliability for dashboards, federation, and remote
write. There is no general way you can automatically synthesize the “correct” data
from the different Prometheus servers, and going via load balancer for Grafana
or federation would lead to artifacts. I suggest taking the easy way out and only
dashboarding/federating/writing from one of the Prometheus servers, and if it is
down, live with the gap. In the rare event that the gap covers a period you care about,
you can always look at the data in the other Prometheus by hand.

For global Prometheus servers, as discussed in “Going Global with Federation” on
page 360, the trade-offs are a bit different. As global Prometheus servers are monitor‐
ing across failure zones, it is plausible that the global server could be down for hours
or days if there was, for example, a major power outage in the datacenter. This is
fine for the datacenter Prometheus servers since they aren’t running, but neither is
anything they were going to be monitoring. We recommend that you always run
at least two global Prometheus servers in different datacenters and in dashboards
making graphs available from all of the global servers. Similarly for remote write.22 It
is the responsibility of the person using the dashboards to interpret the data from the
differing sources.

Alertmanager Clustering
You will want to run one centralized Alertmanager setup for your entire organiza‐
tion, so that everyone has one place to look at alerts and silences, and you get the
maximum benefits from alert grouping. Unless you have a small setup, you can take
advantage of the Alertmanager’s clustering feature, whose architecture is shown in
Figure 21-2.

Figure 21-2. Clustering architecture for the Alertmanager

372 | Chapter 21: Putting It All Together

23 Prior to 0.15.0, the Alertmanager used the Weaveworks Mesh library.
24 Aside from gossiping, the Alertmanager also stores data on local disk, so even in a nonclustered setup you

won’t lose state by restarting the Alertmanager.

The Alertmanager uses HashiCorp’s memberlist23 to gossip information about notifi‐
cations and silences.24 This is not a consensus-based design, so there is no need to
have an odd number of Alertmanagers. This is what is known as an AP, or Availability
and Partition-tolerant, design, so as long as your Prometheus can talk to at least
one Alertmanager that can successfully send notifications, your notifications will
get through. When there are rare issues such as network partitions, you may get
duplicate notifications, but that’s better than not getting notifications at all.

For the clustering to work, every Prometheus must send its alerts to every Alertman‐
ager. How it works is that the Alertmanagers order themselves. The first Alertman‐
ager sends notifications normally, and if successful, gossips that the notification was
sent. The second Alertmanager has a small delay before sending notifications. If it
doesn’t get the gossip that the first Alertmanager sent the notification, then it will
send the notification. The third Alertmanager will have a slightly longer delay and so
on. The Alertmanagers should all have identical alertmanager.yml files, but the worst
that should happen if they don’t is that duplicate notifications will be sent.

To get it running with Alertmanager version 0.24.0 on two machines called foo and
bar, you would start the Alertmanager as follows:

On the machine foo
alertmanager --cluster.peer bar:9094

On the machine bar
alertmanager --cluster.peer foo:9094

The easiest way for you to test if clustering is working is to create a silence on one
Alertmanager and see if it appears on the other Alertmanager. There will also be a list
of all members of the cluster on the Alertmanager’s Status page.

Meta- and Cross-Monitoring
Thus far we have covered monitoring many different types of systems, but among
those we have not covered monitoring your monitoring system. It is fairly standard
to have each of your Prometheus servers scrape itself, but that doesn’t help you when
that Prometheus is having issues. How you monitor your monitoring is known as
metamonitoring.

The general approach to metamonitoring for you to take is to have one Prometheus
per datacenter that monitors all of the other Prometheus servers in that datacenter.
This doesn’t have to be a Prometheus server dedicated to this purpose as Prometheus
is pretty cheap to monitor, and even if you have a setup where each team is entirely

Planning for Failure | 373

https://oreil.ly/fbRs_

25 With all these alerts ready to fire when a global Prometheus goes down, you should to ensure that they
all have the same labels and get automatically deduplicated at the Alertmanager. An explicit alert label of
datacenter: global (or whatever you use as a datacenter label) to prevent the datacenter Prometheus’s
datacenter external label applying is one approach you could take.

26 Preferably not solely via your usual paging provider, since that could be what has failed.

responsible for running their own Prometheus servers, it is still wise to offer meta‐
monitoring as a central shared service.

A global Prometheus can then scrape all of your per-datacenter metamonitoring
Prometheus servers, likely both for /metrics and federating aggregated metrics about
all of the Prometheus servers in your organization.

This still leaves the question of how you should monitor the global Prometheus
servers. Cross-monitoring is metamonitoring where Prometheus servers monitor each
other, rather than the usual metamonitoring hierarchy where Prometheus servers at
the same “level” monitor each other. For example, you will usually have two global
Prometheus servers scrape each other’s /metrics and alert if the other Prometheus is
down. You could also have the datacenter Prometheus servers alerting on the global
Prometheus servers.25

Even with all this meta- and cross-monitoring, you are still depending on Prome‐
theus to monitor Prometheus. In the absolute worst case, a bug could take out all of
your Prometheus servers at the same time, so it would be wise to have alerting that
can catch that. One approach would be an end-to-end alerting test. An always firing
alert would continuously fire a notification via your paging provider, which feeds into
a dead man’s switch. The dead man’s switch would then page you26 if it doesn’t receive
a notification for too long a period. This would test your Prometheus, Alertmanager,
network, and paging provider.

When designing your metamonitoring, don’t forget to scrape other monitoring-
related components, such as the Alertmanager and the /metrics of Blackbox/SNMP-
style exporters.

Managing Performance
Unless you have a particularly small and unchanging setup, running into perfor‐
mance issues is more of a when than an if. As discussed in “Cardinality” on page
99 and elsewhere, high cardinality metrics are likely to be the primary cause of the
performance problems you encounter.

You may also encounter recording rules and dashboards using overly expensive
queries, such as those with range vectors over long durations, as mentioned in
“Histogram” on page 233. You can use the Rules status page, as you saw in Fig‐
ure 17-1, to find expensive recording rules.27

374 | Chapter 21: Putting It All Together

27 By looking at the duration, for example.
28 Or rename, to back up existing data.

Detecting a Problem
Prometheus exposes a variety of metrics about its own performance, so you don’t just
have to rely on noticing that your dashboards have gotten sluggish or are timing out.
While metrics can and do change names and meanings from version to version, it is
unusual for a metric to go away completely.

prometheus_rule_group_iterations_missed_total can indicate that some rule
groups are taking too long to evaluate. Comparing prometheus_rule_group_

last_duration_seconds against prometheus_rule_group_interval_seconds can
tell you which group is at fault and if it is a recent change in behavior.

prometheus_notifications_dropped_total indicates issues talking to the Alert‐
manager, and if prometheus_notifications_queue_length is approaching prome
theus_notifications_queue_capacity, you may start losing alerts.

Each service discovery mechanism tends to have a metric such as prometheus_
sd_file_read_errors_total and prometheus_sd_ec2_refresh_failures_total

indicating problems. You should keep an eye on the counters for the SD mechanisms
you use.

prometheus_rule_evaluation_failures_total, prometheus_tsdb_compactions_

failed_total, and prometheus_tsdb_wal_corruptions_total indicate that some‐
thing has gone wrong in the storage layer. In the worst case you can always stop
Prometheus, delete28 the storage directory, and start it back up again.

Finding Expensive Metrics and Targets
As was mentioned in “by” on page 251, you can use queries such as:

topk(10, count by(__name__)({__name__=~".+"}))

to find metrics with high cardinality. You could also aggregate by job to find which
applications are responsible for the most time series. But these are potentially very
expensive queries as they touch every time series and accordingly should be used
with caution.

In addition to up, Prometheus adds three other samples for every target scrape.
scrape_samples_scraped is the number of samples that were on the /metrics. As
this is a single time series per target, it is much cheaper to work with than the
previous PromQL expression. scrape_samples_post_metric_relabeling is similar,
but it excludes samples that were dropped by metric_relabel_configs.

Managing Performance | 375

The final special sample added is scrape_duration_seconds, which is how long that
scrape took. This can be useful to check if timeouts are occurring if it is reaching the
timeout value, or as an indication that a target is getting overloaded.

Hashmod
If your Prometheus is so overloaded by data from scrapes that you cannot run quer‐
ies, there is a way to scrape a subset of your targets. There is another relabel action
called hashmod that calculates the hash of a label and takes its modulus. Combined
with the drop relabel action, you could use this to scrape an arbitrary 10% of your
targets:

scrape_configs:
 - job_name: my_job
 # Service discovery etc. goes here.
 relabel_configs:
 - source_labels: [__address__]
 modulus: 10
 target_label: __tmp_hash
 action: hashmod
 - source_labels: [__tmp_hash]
 regex: 0
 action: keep

With only 10% of the targets to scrape, if you can spin up a test Prometheus, you
should now be able to find out which metric is to blame. If only some targets are
causing the problem, you can change which 10% of targets to scrape by changing the
regex to 1, 2, and so on up to 9.

Reducing Load
Once you have identified expensive metrics, you have a few options. The first thing to
do is try to fix the metric in the source code to reduce its cardinality.

While you’re waiting for that to happen, you have several tactical options. The first is
to drop the metric at ingestion time using metric_relabel_configs:

scrape_configs:
 - job_name: some_application
 static_configs:
 - targets:
 - localhost:1234
 metric_relabel_configs:
 - source_labels: [__name__]
 regex: expensive_metric_name
 action: drop

376 | Chapter 21: Putting It All Together

29 The Java and Python clients support fetching specific time series using URL parameters such as /metrics?met‐
ric[]=process_cpu_seconds_total. This may not always work for custom collectors, but it can save a lot of
resources on both sides of the scrape if there are only a small number of specific metrics you want.

30 Which is to say, the value of scrape_samples_post_metric_relabeling.

This still transfers the metric over the network and parses it, but it’s still cheaper than
ingesting it into the storage layer.29

If particular applications are being problematic you can also drop those targets with
relabeling.

The final option is to increase the scrape_interval and evaluation_interval for
the Prometheus. This can buy you some breathing room, but keep in mind that it’s
not practical to increase these beyond 2 minutes. Changing the scrape interval may
also break some PromQL expressions that depend on it having a specific value.

There is one other option in the scrape config that can be of use to you called
sample_limit. If the number of samples after metric_relabel_configs30 is higher
than sample_limit, then the scrape will fail and the samples will not be ingested.
This is disabled by default but can act as an emergency relief valve in the event
that one of your targets blows up in cardinality, such as by adding a metric with a
customer identifier as a label, for example. This is not a setting to micromanage or
to attempt to build some form of quota system on top of; if you are going to use it,
choose a single generous value that will rarely need bumping.

We advise having enough buffer room in your Prometheus to be able to handle a
moderate spurt in cardinality and targets.

Horizontal Sharding
If you are running into scaling challenges due to instance cardinality rather than
instrumentation label cardinality, there is a way to horizontally shard Prometheus
using the hashmod relabel action you saw in “Hashmod” on page 376. This is an
approach that is only typically needed if you have many thousands of targets of a sin‐
gle type of application, as vertical sharding is a far simpler way to scale Prometheus
(as discussed in “Growing Prometheus” on page 359).

The approach to horizontal sharding is to have a master Prometheus and several
scraping Prometheus servers. Your scraping Prometheus servers each scrape a subset
of the targets:

global:
 external_labels:
 env: prod
 scraper: 2
scrape_configs:

Managing Performance | 377

 - job_name: my_job
 # Service discovery etc. goes here.
 relabel_configs:
 - source_labels: [__address__]
 modulus: 4
 target_label: __tmp_hash
 action: hashmod
 - source_labels: [__tmp_hash]
 regex: 2 # This is the 3rd scraper.
 action: keep

Here you can see there are four scrapers from the modulus setting. Each scraper
should have a unique external label, plus the external labels of the master Prome‐
theus. The master Prometheus can then use the remote read endpoint of Prometheus
itself to transparently pull in data from the scrapers:

global:
 external_labels:
 env: prod
remote_read:
 - url: http://scraper0:9090/api/v1/read
 read_recent: true
 - url: http://scraper1:9090/api/v1/read
 read_recent: true
 - url: http://scraper2:9090/api/v1/read
 read_recent: true
 - url: http://scraper3:9090/api/v1/read
 read_recent: true

Remote read has an optimization where it will try not to read in data it should already
have locally, which makes sense if it is being used with remote write to work with
a long-term storage system. read_recent: true disables this. Due to the external
labels, the metrics from each scraper will have a scraper label matching where they
came from.

All the same caveats as with federation, covered in “Going Global with Federation”
on page 360, apply here. This is not a way to have one Prometheus that can let
you transparently access all of your Prometheus servers. In fact, it would actually
be a great way to take out all of your monitoring simultaneously through a single
expensive query. When using this it is best to aggregate what you can inside the
scrapers (following “Reducing Cardinality” on page 300), to reduce the amount of
data that the master needs to pull in from the scrapers.

You should be generous with the number of scrapers and aim to only have to increase
every few years. When you do increase it, you should at least double the number of
scrapers to avoid having to increase the number again soon.

378 | Chapter 21: Putting It All Together

Managing Change
Over time you will find that you need to change the structure of your target labels
due to changes in the architecture of your systems. Which applications will host the
metrics used for capacity planning will change over time as your applications split
and merge as a natural part of development. Metrics will appear and disappear from
release to release.

You have the option of using metric_relabel_configs to rename metrics and cram
the new hierarchy into your existing target labels. But over time you would find that
these tweaks and hacks accumulate and ultimately cause more confusion than you
may have been trying to prevent by trying to keep things the same.

We would advise accepting that changes like this are a natural part of the evolution
of your system, and as with gaps due to failed scrapes, you usually find that you don’t
care much about the old names after the fact.

Long-term processes such as capacity planning, on the other hand, do care about
history. At the least you should note the names of the metrics over time and possibly
consider using the approach in “Rules for APIs” on page 302 in your global Prome‐
theus if the changes are a bit too frequent to manage by hand.

In this chapter you learned how to approach a Prometheus deployment, and in
what order to add Prometheus monitoring to your system, how to architect and run
Prometheus, and how to handle performance problems when they arise.

Getting Help
Even after reading everything up to this point, you may have questions that are
not covered here. There are a number of places you can ask questions. The Com‐
munity Page of the Prometheus website lists the official communication method of
the Prometheus projects, such as the prometheus-users mailing list, which is also
available for user questions. There are also unofficial venues for questions, including
the Prometheus tag on StackOverflow, the #prometheus channel on the CNCF Slack,
and the PrometheusMonitoring subreddit. Finally, there are several companies and
individuals offering commercial support listed on the Support & Training page,
including Brian’s company, Robust Perception, and Julien’s company, O11y.

We hope you have found this and all of the preceding chapters useful and that
Prometheus will help to make your life easier through metrics-based monitoring.

Getting Help | 379

https://oreil.ly/lqZT8
https://oreil.ly/CTPNp
https://oreil.ly/MGxtQ
https://slack.cncf.io
https://oreil.ly/nDPxu
https://oreil.ly/XEg_F
https://oreil.ly/X9OYd
https://o11y.eu

Index

Symbols
!= (negative equality matcher), 236
!~ (negative regular expression matcher), 236
() (parentheses), using to change order of eval‐

uation, 276
.* prefixing/suffixing regular expressions, 236
; (semicolon) separator in source_labels, 151
= (equality matcher), 236
== operator, 33
=~ (regular expression matcher), 236
@ (at) modifier, 242, 257
^ (exponent) operator, 280
| (pipe symbol), alternation operator, 151

A
abs function, 279
absent function, 287
absent_over_time function, 287
__address__ labels, 157

relabeling, 158
agent mode, 365
agents (Consul), 146, 188
aggregation, 93

basics of in PromQL, 229-235
counter, 231
gauge, 229-231
summary, 232

functions for aggregation over time,
295-296, 302

level of in recording rule names, 305
preaggregating every application metric, 303
using in recording rules, 301

aggregation operators, 249-259
avg, 254

count, 253
count_values, 258
group, 255
grouping, 249-252
max and min, 256
quantile, 257
stddev, 255
stdvar, 256
sum, 252
topk and bottomk, 256

alert field, 312
Alert status page, 314
alerting, 5, 31-38, 311

choosing alert thresholds, 314
how to approach, further information on,

322
missing job and, 287
predict_linear function for resource limit

alerts, 294
preservation of job and instance labels for,

250
reliable, 371

alerting field, 323
alerting rules, 16, 32, 312-322

annotations and templates, 318-321
for field, 314
good alerts, 321
labels for, 316-318

Alertmanager, 16, 325-348
clustering, 372
configuration file, 326-345

inhibitions, 344
minimal configuration example, 327
receivers, 334-344

381

routing tree, 327-334
configuring, 35, 322-324

external labels, 323
downloading and installing, 35
notification pipeline, 325
Prometheus and Alertmanager architecture,

311
starting, 36
telling Prometheus which one, 34
web interface, 345-348

alertmanagers field, 322
alertname labels, 313
alerts, 4

defining multiple alerts with different
thresholds and labels, 317

firing alert on Alerts page, 35
good alerts, 321
owners for, 317, 328

Alerts list, 339
ALERTS metric, 313
ALERTS_FOR_STATE metric, 313
alert_relabel_configs, 323, 371
aliasing, 113
aligned data, 247
Amazon EC2 (see EC2)
and operator, 274, 313, 319
annotations (alert), 318-321
Ansible, 139, 367

using its templating to create targets for
Node Exporter, 141

APIs, 242
(see also HTTP API)
rules for, 302

application logs, 10
applications, metric names coming from, 63
architecture of Prometheus, 11-17
arithmetic mean, 254
arithmetic operators, 261-263, 267

summary of, 262
at (@) modifier, 242, 257
atan2 operator, 263
authentication, 370

enabling Basic Authentication, 354
in HTTP SD, 145
for Kubernetes API servers scrapes, 178
options in scrape config, 162

authorization, 162, 175, 354
average load, 132
averages

attempt to average averages, 254, 307
calculating average event size using histo‐

grams, 235
calculating with summary, 232

avg operator, 254
avg without expression, 127, 230
avg_over_time, 95, 239, 295, 295

range vectors as input, 277

B
backend-ticket receiver, 329
base units, 25, 61

quantiles and percentiles, 53
seconds as base unit for time, 49

Basic Authentication, enabling, 354
basic_auth, 162
batch jobs, 58, 76

alerting on not succeeding recently, 314
idempotency for, 58
recording when Cassandra backups comple‐

ted, 135
service-level, Pushgateway metrics cache

for, 76
bcrypt cost, 354
billing, 18, 160
binary operators, 261-276

operator precedence, 275
vector matching, 265-275

many-to-many and logical operators,
271-275

many-to-one and group_left, 268-271
one-to-one, 266

working with scalars, 261-265
arithmetic operators, 261-263
comparison operators, 263-265
trigonometric operator atan2, 263

Blackbox exporters, 194-208, 210
catching filed scrapes or failed probes, 316
default registry and, 222
DNS name resolution, 196
DNS probes, 204-205
downloading and running, 194
HTTP probes, 201-204
ICMP probes, 195-199
Prometheus configuration, 205
TCP probes, 199-201

bool modifier, 264
using to compare scalars, 265

boolean values, 95

382 | Index

bottomk operator, 256, 257
bridges, 79
buckets (in histograms), 53, 60, 233

cumulative histograms, 54
dropping to reduce cardinality, 165
using rate before sum on, 253

by clause, 251
count by, 254
group by, 255
sum by, 94
versus without clause, 251

C
caches, 9, 11, 60

memory usage of, 48
metrics for cache overall and cache misses,

59
tracking size or number of files in, 50

cAdvisor, 169-172
container CPU metrics, 170
container labels, 171
container memory metrics, 171
embedded in Kubelet, 176

callbacks, 50
cardinality, 99

performance problems with, 359
reducing with recording rules, 300, 304

case, changing for label values, 160
Cassandra, 135
ca_file, 175
ceil function, 281
certificate authority, 175

self-signed, creating using OpenSSL, 352
certificates, TLS, 352
cgroups

hierarchy of, 171
metrics about (see cAdvisor)

change of base function, 280
change, managing, 379
changes function, 293
characters (in metric names), 60
Chebyshev's inequality, 255
check config (promtool), 298
check metrics, 83
check rules, 298
check-config (amtool), 326
Chef, 139
child metrics, 90, 91-93

of node_hwmon_sensor_label, 270

child routes, 327
chokepoints in your applications, 358
clamp function, 281
clamp_max function, 281
clamp_min function, 281
client libraries, 3, 12, 41, 219

exposition in (see exposition)
fetching time series using URL parameters,

377
metrics related to runtime, 62
official versus unofficial, 12
registration of metrics with, 44

Cloud Native Computing Foundation (CNCF),
3, 172, 364

Cloudwatch Exporter, 226
cluster labels, 250
clustered storage system, 17, 364
clustering, 15
clustering (Alertmanager), 372
Collect method, 220
collectd, 209
--collector.diskstats.device-exclude flag, 128
--collector.textfie.directory flag, 135
CollectorRegistry.collect, 79
CollectorRegistry.metricFamilySamples, 79
collectors, 126

(see also Node Exporter)
custom, 13, 95, 219-224

labels for metrics, 223
compaction duration, time series database, 233
comparison operators, 263-265, 267

bool modifier and, 264
configuration

asking Prometheus to reload, 298
checking with promtool check rules, 298

configuration files, use of YAML, 21
configuration management, 367
configuration management systems, 139
connection refused error, 32
console templates, 104
ConstMetrics, 13
Consul, 139, 141

keeping only Consul services with prod tag,
161

monitoring Consul, 147
production tags for production services, 152
service discovery, 146

using replace to relabel team label, 157
writing Consul Telemetry exporter, 215-219

Index | 383

consul_up, 220
container orchestrators, 172

(see also Kubernetes)
containers, 169-172

cAdvisor, 169-172
CPU metrics, 170
labels, 171
memory usage metrics, 171

context deadline exceeded error, 32
context of events, 8
context switches, 131
continue setting (routing), 330, 336
continuous profiling, 8
count, 98, 100

about, 253
by clause, 252
count by, 132, 254
counting unique label values, 253
dividing by sum, 232
histogram metric, 235
using count_values with, 259
using rate before sum on, 253

counters, 26, 43-47, 289-292
aggregating, 231
attempting to increase by negative number,

47
Consul, 216
container CPU metrics, 170
counting exceptions, 45
counting size, 47
increase function, 291
irate function, 291
multiprocess mode and, 70
Node Exporter diskstat metrics, 128
processing in custom collector, 221
rate function, 289
resets function, 292
text exposition format for, 81
unit testing in Python, 56
using rate before sum with, 253

CounterValue, 220
count_over_time, 295
count_values operator, 258

use with count, 259
cpu collector, 126
cpu labels, 126
CPUs

calculating 90th percentile of system mode
CPU usage, 257

counting number in each machine, 253
metric for container CPUs, 170
PDUs and, 140
requirements for Prometheus, 366

CPython, 68
credentials_file, 163, 175, 178
cronjobs, 134, 145

causing CPU usage to spike, 321
outputting to textfile collector, 136

cross-monitoring, 374
cube root, 280
cumulative histograms, 54
cURL utility, 71
custom collectors (see collectors)
custom registries, 44, 68, 77

D
dashboard annotation, 341
dashboards, 15, 103, 358

(see also Grafana)
avoiding wall of graphs, 109
creating using Grafana template variables,

118
with graph and Stat panels in Grafana, 113
making faster, 300
new Grafana dashboard, 107
Promdash and console templates, 104
with Stat panels and Table panel, 116

data sources, 106
date functions, 284
days, 240
days_in_month function, 284
day_of_month, 284
day_of_week function, 284
day_of_year function, 284
debug logs, 10

scrape errors on, 32
debugging, 5
dec method, 48
default namespace, 180
default registry, 65

(see also registry)
default route, 327

error to use matchers on, 328
DefaultExports.initialize, 73
degrees and radians, converting between, 282
delete_from_gateway, 77
delta function, 294
dependencies

384 | Index

Java servlet client library, 75
simpleclient in Java, 73

deploying Prometheus, 357-379
federation, 360-363
getting help, 379
growing Prometheus, 359
long-term storage, 363-365
managing change, 379
managing performance, 374-378

detecting a problem, 375
finding expensive targets and metrics,

375
hashmod relabel action, 376
horizontal sharding, 377
reducing load, 376

planning a rollout, 357-358
planning for a failure, 370-372

Alertmanager clustering, 372
meta- and cross-monitoring, 373

running Prometheus, 365-370
configuration management, 367
hardware, 365-367
networks and authentication, 368-370,

368
deriv function, 241, 293

using instead of delta, 294
Desc type, 219, 223
Describe method, 219
destination (notifications), 342

setting based on email_to label, 343
device labels, 127, 129, 229, 249

recording rules and, 303
removing using sum without, 231

df command, 127
disk I/O, 27, 125, 128, 129
diskstats collector, 128
distributed tracing, 9
DNS

kube-dns, 182
name resolution used by Prometheus and

Blackbox exporters, 196
probing with Blackbox exporter, 204-205

Docker
container labels, 171
id labels from, 170
installing Grafana with, 104
running cAdvisor with, 169
running Node Exporter within, 126

dotted string notation, 213

DOWN state, alerting on, 32
drop (relabel action), 151, 164, 376
Dropwizard metrics, 211

counters, 216
durations

instrumenting, not excluding failures, 58
metrics on, 57

probe_duration_seconds, 196
not adding metric for duration of every

function, 60
in Prometheus as used in PromQL, 240

E
eBPF (enhanced Berkeley Packet Filters), 8
EC2 (Elastic Compute Cloud), 139, 148-148,

161
relabeling tags using labelmap action, 159
team tags, 152

Elasticsearch, 80
email alerts, 35, 327
email_to labels, 343
end, 245, 247
end function, 242
endpoints (Kubernetes), 174, 177
endpointslice service discovery, 177, 182
enums, 94
env labels, 250, 317, 331

in Slack, 337
epsilon, 264
equality matcher (=), 236
escaping characters in exposition format, 82
evaluation_interval, 299, 377

changing to an hour, reasons not to, 304
events, 7

counters tracking, 26
exceptions, counting, 45
exp function, 254, 280
exponent operator (^), 280
exporters, 3, 13, 187-208, 368

Blackbox, 194-208
cAdvisor, 169-172
considering in Prometheus rollout, 357
Consul, 187-189
Consul Exporter, 147
Consul metrics exporter written in Python

3, 222
default ports, 190
default registry and, 222
exposing timestamps, staleness and, 238

Index | 385

Grok, 191-194
guideline for, 187
kube-state-metrics, 184
MySQLd, 189-191
Node Exporter (see Node Exporter)
other monitoring systems, 209, 214
Prometheus configuration for Blackbox

probe URL parameters, 205
SaaS monitoring systems, 210
server-side security, 351
writing, 215-226

Consul Telemetry, 215-219
custom collectors, 219-224
guidelines for, 224

exposition, 65-86
from batch jobs using Pushgateway, 76-79
custom collector, 222
from Go client libraries, 71
from Java client libraries, 72-76
from Python client libraries, 66-71

parsers, 80
using bridges, 79

exposition formats
OpenMetrics, 83-86

labels, 85
metric types, 84
timestamps, 85

parsers in Python client libraries, 80
Prometheus text format, 80-83

escaping characters in, 82
labels, 82
metric types, 81
timestamps, 82
using promtool check metrics, 83

supported by Prometheus, 65
expression browser, 15, 21

range vector in Console tab, 239
using, 23-27

external labels, 323, 364
unique, for every Prometheus, 371

external_labels, 154, 317, 328

F
failures

metrics for total and failures, 59
planning for, 370-372

Alertmanager clustering, 372
meta- and cross-monitoring, 373

fallback (or default) route, 327

FDsNearLimit alert, 317
federation, 301, 378

global Prometheus servers, 372
going global with, 360-363

file descriptors, 366
file service discovery (file SD), 139, 142-145
files field, 298
filesystem collector, 127
filesystems, 366

node_filesystem_size_bytes metric, 229
returning total filesystem size on each

machine, 253
file_sd_configs, 143, 298
filtering, 263

avoiding in recording rule expressions, 312
bool modifier and, 264

firing alerts, 313, 314, 317
five-minute rate, 290
float64, 221
floating-point math

comparisons with NaN, 256
dividing by zero, resulting in NaN, 46

floating-point numbers
64-bit, use by Prometheus, 47
using equality comparisons with, 264

for field, 314, 317
fork syscalls, 131
formats

Prometheus text format and OpenMetrics, 4
(see also exposition formats)

third-party software exposing metrics in
non-Prometheus format, 3

frequency histograms, 258
frontend-pager receiver, 335
fstype labels, 127, 229, 249
fully anchored regular expressions, 150, 236
functions, 277-296

aggregation over time, 295-296
changing gauges, 293-295

changes function, 293
delta function, 294
deriv function, 293
holt_winters function, 295
predict_linear function, 294

changing type
scalar, 278
vector, 277

composing range vector functions, 302
counter, 289-292

386 | Index

increase function, 291
irate function, 291
rate function, 289
resets function, 292

histogram_quantile, 288
label_join, 286
label_replace, 286
math, 279-283

abs, 279
ceil and floor, 281
clamp, clamp_max, and clamp_min, 281
exp, 280
ln, log2, and log10, 279
round, 281
sgn, 282
sqrt, 280
trigonometric functions, 282

missing series, absent and
absent_over_time, 287

sorting with sort and sort_desc, 288
time and date, 283-285

days_in_month, 284
day_of_month, 284
day_of_week, 284
day_of_year, 284
hour function, 284
minute function, 284
month function, 284
time function, 283
year function, 284

G
gaps

between data points you have and bound‐
aries of the range., 231

due to failed scrapes, 370, 379
in exception ratio graph for no requests, 46

Gather method, 79
GaugeHistograms, 84
gauges, 26, 47-50

aggregating, 229-231
changing, functions for, 293-295

changes function, 293
delta function, 294
deriv function, 293
holt_winters function, 295
predict_linear function, 294

Consul, 216
multiprocess_mode configuration, 69

needed by histogram_quantile, 289
processing in custom collector, 220
text exposition format for, 81
timestamp in text exposition format, 83
used as enum, custom collector for, 94
using callbacks, 50

GaugeValue, 220
geometric mean, 254
get_sample_value function, 56
global Prometheus servers, 372
global section (prometheus.yml), 323
globs, use in filenames, 143
Go

client library metrics for, 62
collectors written in, 219
custom collectors written in, 13
exposition from client libraries, 71
RE2 regular expression engine, 152
Registry.Gather, 79
running Consul Telemetry exporter, 218
templating language, 104
templating system, 319
WithLabelValues, 88
writing exporters in, 215

Grafana, 15, 103-121, 363
aligned data, 247
dashboards and panels, 107-109

avoiding wall of graphs, 109
data source, 106
installing, 104-106
reporting_enabled setting, 104
Stat panel, 113-114
State timeline panel, 117
Table panel, 115
template variables, 118
Time series panel, 109-113
time shifting panel to different time range,

241
Graphite, 6, 209

bridge, 79
dotted string notation, 213

Graphite Exporter, 358
graphs

graph editor in Grafana, 109
limiting number on a dashboard, 109

Grok Exporter, 191-194
configuring for scraping by Prometheus,

193
defining where to expose its metrics, 193

Index | 387

grok.yml to parse logfile and produce met‐
rics, 191

metrics produced by, 192
use of patterns based on regular expressions,

192
group operator, 255
grouping, 249-252

of alerts in Alertmanager, 326, 330
disabling, 332

by clause, 251
without clause, 250

grouping keys, 79
groups, 78

alerting rules in, 312
problem with rule groups, 375
repeating notifications for, 332
in rule files, 298, 300
throttling notifications for, 332

group_by, 330, 343
group_interval, 332

tweaking, 333
group_left, 97, 131, 268-271, 272
group_right, 271
group_wait, 332
growing Prometheus, 359
guests, CPU usage by, 127
Gunicorn, 68-71

H
handler labels, aggregating away, 232
hardware, 365-367
hashmod relabel action, 376, 377
health checks, standardizing across services,

200
health monitoring, HTTP SD, 145
Helm, use to create components from Prome‐

theus ecosystem, 185
HELP (metrics), 81, 84, 136
help, sources of, 379
histograms, 52-56, 100, 233-235

buckets, 53, 60
using rate before sum on, 253

cumulative, 54
dropping buckets to reduce cardinality, 165
frequency histogram, 258
HTTP request latency from Grok Exporter,

192
text exposition format for, 81

histogram_quantile function, 53, 81, 233, 258

about, 288
holt_winters function, 295
Home Dashboard (Grafana), 105
honor_labels (scrape config), 166
horizontal sharding, 377
host labels, 153
hour function, 275, 284
hours, 240
HTTP

exposition to Prometheus over, 65
probing with Blackbox exporter, 201-204
receivers based on, 337

HTTP API, 242-247
aligned data, 247
query or query endpoint, 242-245
query range endpoint or query_range,

245-247
HTTP Basic Authentication, 162
HTTP Bearer Token Authentication, 162
HTTP requests, 9

exposition format in response to, 13
logging latency for, using Grok Exporter,

192
metrics on, 11
metrics on broken out by path, 87
rejected, 32

HTTP server in Python (example), 41
HTTP service discovery (HTTP SD), 139, 145
HttpServer class, 73
HttpServlet class, 74
http_config field, 337
http_requests_total, 242
http_response_size_bytes, 232
http_response_size_bytes_count, 232
http_response_size_bytes_sum, 232
http_sd_configs, 145
hwmon collector, 130

I
I/O, disk, 27, 128, 129
IAM user (Amazon), 148
ICMP probing, 195-199

extra privileges required for, 195
failed probe from IPv6 target URL parame‐

ter, 197
icmp module, 197
pinging localhost, 195
probing google.com with debug=true end‐

ing URL, 197

388 | Index

id labels, 170
idempotency for batch jobs, 58
idle time per second per CPU, 127
ignoring clause, 266

use with and operator, 275
use with or operator, 272
using with group_left, 271

image labels, 171
imports, 44
inc method, 48
increase function, 231, 291
InfluxDB, 209, 211
info metrics, 84, 96

joining to another metric, 97
ingress, 183
inhibitions, 325, 344
instance labels, 23, 132, 250

grouping alerts and, 331
including in sum without, 94
on clause with, 270
in recording rule output, 304
relabeling, 158
removing using sum without, 230, 231
service-level batch jobs and, 76

InstanceDown alert, 35
viewing in Alertmanager, 37

instant rate (see irate function)
instant vector selector, 235, 237
instant vectors, 243, 245

binary operators applied to, 261
empty, input to aggregation operator, 252
empty, returned by binary operator, 266
gauge-changing functions returning, 293
matching (see vector matching)
quantile working across in aggregation

group, 258
return by PromQL functions, 277
{} 0, 261

instrumentation, 41-63, 65, 358
counters, 43

counting exceptions, 45
counting size, 47

deciding how much to instrument, 59
deciding what to instrument, 57

library instrumentation, 59
service instrumentation, 57

direct, use by info metric, 97
example Python program exposing Prome‐

theus metrics, 41

feeding data into non-Prometheus library,
79

gauges, 47-50
Go program demonstrating, 71
histograms, 52-56
for languages running on JVM, 72
naming metrics, 60-63
Python batch job and pushing its metrics to

Pushgateway, 77
summary, 50
unit testing, 56

instrumentation labels, 88-93
child, 91-93
clashes with target labels, honor_labels and,

166
device, fstype, and mountpoint, 249
metric, 90
metrics without, working with, 273
mode, 253
multiple labels for a metric, 90

iptables command, 134
IPv4, 199
IPv6, 197
irate function, 231, 291

J
Java

client library, 377
integration with Dropwizard, 211

CollectorRegistry.metricFamilySamples, 79
exposition in client libraries, 72-76

HttpServer class, 73
servlet, 74

JMX (Java Management eXtensions), 210
labels method, 88

jinja2 templating (Ansible), 141
JMX (Java Management eXtensions), 210

Dropwizard exposing metrics via, 211
job labels, 24, 78, 144, 250

k8apiserver, 178
kubelet, 175
Kubernetes service names, 180
relabeling, 158, 163

job:process_cpu_seconds:rate5m, 300
jobs

duplicate, 163
getting average response size across all

instances, 233
job_name, 142

Index | 389

JSON, 143, 215
use by HTTP SD endpoints, 145

JVM (Java Virtual Machine), 72

K
keep (relabel action), 150, 164
kill -HUP command, 298
kube-dns, 182
Kubelet, 174
Kubernetes, 139, 172-185

configuration management, 367
kube-state-metrics, 184
Prometheus deployment in, alternatives,

185
running Prometheus in, 172-174
service discovery, 174-183

endpointslice, 177
ingress, 183
node, 174
pod, 182
service role, 177

kubernetes service, 177
kubernetes_sd_configs, 176

L
labeldrop (relabel action), 165, 171
labelkeep (relabel action), 165, 171
labelmap (relabel action), 159
labels, 4, 87-101, 286, 359

about, 87
aggregating, 231
aggregating with, 93
alert, 316-318, 319, 321
for Alertmanager, 325
changes in, other monitoring system

exporters, 214
clashes in and honor_labels, 166
container, 171
counting unique label values, 253
for custom collector metrics, 223
displaying label values in Grafana, 114
exposition format, escaping characters in

values, 82
Graphite bridge, 79
grouping key for metrics from push to

Pushgateway, 78
instrumentation, 88-93
instrumentation and target, 88
limiting by, using selectors, 235

metric names and, 62
naming, 89
not using recording rules to fix bad labels,

304
in OpenMetrics format, 85
patterns in, 94-98

breaking changes and labels, 98
enum, 94
info, 96

in Prometheus text exposition format, 82
provided for targets by static config, 142
recording rules undoing benefits of, 303
relabeling and, 14
removing any you don't know about with by

clause, 252
set by Consul, 221
specifying in labels field of rule file, 299
specifying to keep using by clause, 251
target labels, 140
use in exporters, gotchas, 224
when to use, 98-101

labels method, 88, 91
label_join function, 286
label_replace function, 286
last_over_time, 296
latency

calculating average latency, 56
latency SLAs and quantiles, 55
logging for HTTP requests using Grok

Exporter, 192
tracking for Hello World program (exam‐

ple), 51
latency_too_high_threshold, 343
le labels, 81, 165, 233
least-squares regression, 293
left-associative (operators), 276
level (recording rule names), 305
libraries

instrumentation, 59, 65
in metric names, 62

Linux
metrics on offer, 125
profiling of kernel events, 8

lists
list comprehensions, 54
produced by service discovery, relabeling,

161
ln function, 254, 279
load, reducing, 376

390 | Index

loadavg collector, 132
log10 function, 279
log2 function, 279
logging, 9

categories of, 10
converting logs to metrics using Grok

Exporter, 191
logging systems, 10
logical operators, 271-275

and, 274
or, 271
unless, 273

Long Term Support (LTS) releases, 20
long-term storage, 17, 363-365
lowercase (relabel action), 160
LTS (see long-term storage)
LTS (Long Term Support) releases, 20

M
machine roles approach, 96
Management Information Base (MIBs), 210
many-to-many vector matching, 271-275
many-to-one vector matching, 268-271
ManyInstancesDown alert, 312
matchers, 235, 328

error to use on default route, 328
match_re, 345
math functions, 279-283

abs, 279
ceil and floor, 281
clamp, clamp_max, and clamp_min, 281
exp, 280
ln, log2, and log10, 279
round, 281
sgn, 282
sqrt, 280
trigonometric functions, 282

matrix (see range vector selector)
max, 256

using with gauges, 230
max_over_time, 240, 295, 302
mean, 254
meminfo collector, 130
memory

container metrics for, 171
memory usage graph in Grafana, 110
results of process_resident_memory_bytes,

25

usage by Prometheus and Node Exporter,
30

metadata
labels for Docker containers, 171
mapping to targets using relabeling, 149
node service discovery in Kubernetes, 176
provided by service discovery, 140
target discovered by EC2 SD, 148
viewing for target labels in file SD, 144

metamonitoring, 373
method labels, 93

removing using sum without, 94
metric (recording rule names), 305
metric family, 90
metrics, 10

alerts on, 321
automatic registration with client library, 44
configuring types to collect with Node

Exporter, 126
Consul, 215
from Consul Exporter, 188
container, 170

CPU, 170
converting logs to with Grok Exporter, 191
definitions of, 44
details handled by client libraries, 13
from exporters, 125
exposed by Node Exporter, 27, 126
exposition to Prometheus, 65
finding expensive metrics, 375
from Grok Exporter, 192, 193
from Java client libraries, 73
from kube-state-metrics, 184
limits on Prometheus' handling of, 59
machine-level from other monitoring sys‐

tems, 357
/metrics page of Prometheus, 23
/metrics path, 67
from MySQLd Exporter, 190
naming, 60-63, 307
not using recording rules to fix metric

names, 304
problems from too much cardinality, 359
produced by Blackbox probes, 196
Pushgateway showing from Python batch

job, 78
relabeling, 164
for simple HTTP server in Python (exam‐

ple), 41

Index | 391

suffixes, 49
total and failures, not success and failures,

59
types in OpenMetrics format, 84
types in Prometheus text format, 81
use of in monitoring systems, 303

metrics (pod port), 182
metrics.Samples, 221
MetricsServlet class, 74
metrics_app, 66
metrics_path, 162, 176
metric_relabel_configs, 164, 286, 376

versus relabel_configs, 164
MIBs (Management Information Base), 210
milliseconds, 240
min, 256
Minikube, 177
minute function, 284
minutes, 240
min_over_time, 295
missing series, 287
mmap utility, 70
mode labels, 126, 267, 268

counting without, 253
modulo operator (%), 262
modulus setting, 378
monitoring, 4-11

about, 4
brief history of, 6
categories of, 7
cross-monitoring, 374
metamonitoring, 373

monitoring systems (other), 209-214
about, 209-211
existing instrumentation from, 358
having parsers for Prometheus text format,

80
InfluxDB, 211
Prometheus integration with, 211
StatsD, 212-214

month function, 284
mounted filesystems, metrics on, 127
mountpoint labels, 127, 229, 249
mtime, 137
multiple labels for a metric, 90
multiplication, 1 as identity element for, 272
multiprocess deployments, 214
multiprocess mode with Gunicorn, 68-71
MultiProcessCollector, 68

multiprocess_mode configuration (gauges), 69
MustNewConstMetric function, 13, 220, 221

specifying label values in, 223
MustRegister function, 72
MySQLd Exporter, 189-191

configuring for scraping by Prometheus,
190

downloading and running, 189
metrics from, 190

N
Nagios, 6
Nagios Remote Program Execution (NRPE),

210
name (metrics), 61
name labels, 171, 236
namespace labels, 176
naming labels, 89
naming recording rules, 304-308
NaN (not a number), 46, 272

input to avg operator, 254
return by max and min, 256
sorting and, 288

Native Histograms (experimental feature), 55
natural logarithm, 279
negative equality matcher (!=), 236
negative regular expression matcher (!~), 236
NetBox, 139
netdev collector, 129
network bandwidth, 366
networks, 368-370
New dashboard (Grafana), 111
NewCounter, 72
NewDesc, 219
nice mode, 127
Node Exporter, 27-31, 125-137, 357

configuring Prometheus to monitor, 28
cpu collector, 126
diskstats collector, 128
downloading and installing, 28
filesystem collector, 127
hwmon collector, 130
loadavg collector, 132
meminfo collector, 130
netdev collector, 129
node_filesystem_size_bytes metric, 229
OS collector, 132
pressure collector, 133
running with Consul, 147

392 | Index

running within Docker, 126
stat collector, 131
textfile collector, 134-137
uname collector, 132
version 1.4.0 with 5.18.0 Linux kernel, met‐

rics from, 126
node service discovery, 174
nodename label, 132
node_boot_time_seconds, 131
node_cpu_guest_seconds_total, 127
node_cpu_seconds_total, 126
node_disk_io_time_seconds_total, 129
node_filesystem prefix (metrics), 127
node_filesystem_avail_bytes versus node_file‐

system_free_bytes, 128
node_filesystem_files, 128
node_filesystem_files_free, 128
node_filesystem_size_bytes, 249

aggregation of, 251
node_hwmon prefix (metrics), 130
node_hwmon_sensor_label, 131, 270

using or operator to substitute missing time
series, 272

node_hwmon_temp_celsius, 131
node_intr_total, 131
node_memory_Buffers_bytes, 130
node_memory_Cached_bytes, 130
node_memory_MemAvailable, 130
node_memory_MemFree_bytes, 130
node_memory_MemTotal_bytes, 130
node_network prefix (metrics), 129
node_network_receive_bytes_total, 129
node_network_transmit_bytes_total, 129
node_os_info, 132
node_os_version, 132
node_uname_info, 132
notifications, 311, 326

Alertmanager notification pipeline, 325
resolved, 343
sending only at certain times for an alert,

313
templating, 320, 337-343

notifiers, 334-336, 337
NRPE Exporter, 210
Nyquist-Shannon sampling theorem, 113

O
OAuth2, 162
observe method, 51

offline-serving systems, 58
offset, 241
on clause, 267, 270, 313

use with and operator, 275
one-to-one vector matching, 266
online-serving systems, 57
OpenMetrics, 4, 83-86

metric suffixes, 49
metric types, 84
support for format by Python client library,

71
timestamps, 83, 85

OpenTelemetry (OTel), 7
operational monitoring of computer systems, 5
operations (recording rule names), 305
or operator, 271
OS collector, 132
OTel (OpenTelemetry), 7
outliers, detecting, 255
over_time functions, 302, 315

P
pager storm, 332
PagerDuty notifier, 335
parsers, 80
passwords, 354
path labels, 87, 192

aggregating away, 93
paths

HTTP requests broken out by, 87
options in scrape config, 162

patterns (regular expressions), 152
use by Grok Exporter, 191

PDUs (Power Distribution Units), 140
pending alerts, 313, 314
percentiles, 53

median, 25th, and 75th, 257
performance

aggregate cAdvisor metrics, issue with, 170
importance for client libraries, 70
managing, 374-378

detecting a problem, 375
finding expensive targets and metrics,

375
hashmod relabel action, 376
horizontal sharding, 377
reducing load, 376

Perl, 214
pgw (see Pushgateway)

Index | 393

PHP, 214
pid (process ID), 298
planning a rollout, 357-358
playbook for alerts, 320
plumbing, 5
pods (Kubernetes), 177

backing all Kubernetes services except API
servers, scraping, 179

service discovery, 182
pod_name labels, 176
population standard deviation, 255
ports, exporter default, 190
POST method (HTTP), 298
post-order tree transversal, 328
Power Distribution Units (PDUs), 140
precedence (operator), 275
predict_linear function, 294
present_over_time, 296
Pressure Stall Information (PSI), 133
ProbeFailing alert, 316
probe_ip_protocol, 197
probe_success, 196
process ID (pid), 298
process library, 62
processes

blocked or running, metrics on, 131
long-lived and multithreaded in Prome‐

theus, 214
moving from checks on individual processes

to service health as a whole, 7
multiprocess with Gunicorn, 68-71

process_cpu_seconds_total, 235
process_resident_memory_bytes, 24, 30

in Grafana graph editor, 110
graph of in expression browser), 26

process_start_time_seconds, 293
production tags (Consul), 152
profiling, 8
promauto, 72
Prometheus

about, 3
architecture, 11-17
use cases not suited for, 17

Prometheus Community Kubernetes Helm
Charts, 185

Prometheus Operator project, 185
Prometheus vCloud Director SD, 139
prometheus.Collector interface, 219
prometheus.MustNewConstMetric, 220

prometheus_build_info, 269
prometheus_multiproc_dir environment vari‐

able, 69, 71
prometheus_sd_http_failures_total, 145
promhttp.Handler, 71
PromQL, 4

about, 229
aggregation basics, 229-235

counter, 231
gauge, 229-231
histogram, 233-235
summary, 232

aggregation operators, 249-259
avg, 254
count, 253
count_values, 258
group, 255
grouping, 249-252
min and max, 256
quantile, 257
stddev and stdvar, 255
sum, 252
topk and bottomk, 256

alerting rule, expression for, 33
binary operators, 261-276

operator precedence, 275
vector matching, 265-275
working with scalars, 261-265

functions, 277-296
aggregation over time, 295-296
changing type, 277
counters, 289-292
histogram_quantile, 288
label, 286
math functions, 279-283
missing series, absent and

absent_over_time, 287
sorting with sort and sort_desc, 288
time and date, 283-285

HTTP API, 242-247
aligned data, 247
query, 242-245
query_range, 245-247

recording rules, 297-308
naming, 304-308
using, 297-300
when to use, 300-304

selectors, 235-242
at (@) modifier, 242

394 | Index

matchers, 235
offset, 241
range vector, 238
subqueries, 240

promtool
check metrics, 83
check rules, 298

proxy_url, 162
pull, 369
push, 369
pushadd_to_gateway, 77
Pushgateway, 76-79

improper use of, 369
target labels, 88

push_to_gateway, 77
Python

application using label for counter metric,
88

client libraries in Python 3, 41
client library, 377
Consul metrics exporter written in, 222
exposition from batch jobs using Pushgate‐

way, 77
exposition in client libraries, 66-71

multiprocess with Gunicorn, 68-71
Twisted, 67
WSGI, 66

exposition using Graphite bridge, 79
unit testing a counter in, 56

python_info expression, 42, 96

Q
quantile operator, 257
quantiles, 52, 233

calculating with histograms, 233
latency SLAs and, 55
limitations of, 55
and percentiles, 53

quantile_over_time, 258, 295
quartiles (1st and 3rd), 257
query, 242-245, 285, 319
query endpoint, 242
query range endpoint, 245

(see also query_range)
query_range, 245-247, 285, 300

gotcha when using with topk and bottomk,
257

using time function with, 283

R
race conditions, 314, 362
radians and degrees, converting between, 282
RAM, 366
range loop, 319
range vector selector, 238
range vectors, 240

composing range vector functions, 302
functions and, 277
gauge-changing functions taking, 293
in recording rules, 301
use with query endpoint, 244
use with query_result, 245

rate function, 26, 30, 44, 51, 113, 231, 232, 234
about, 289
increase function and, 291
irate function and, 292
not using with a counter, 253
offset and, 241
use with range vectors, 238
using at (@) modifier with, 242
using before sum with counters, 253
using first for buckets exposed by histogram

metric type, 289
using to determine if resources are overloa‐

ded, 134
using with max_over_time, 240
using with sum, 302

rate, errors, and duration (RED method), 57
ratio, calculating for exceptions, 46
RE2 engine for regular expressions, 152
read_recent: true, 378
receivers, 326

backend-ticket, 329
configuring, 334-344

notification templates, 337-343
resolved notifications, 343

record field, 312
recording rules, 16, 297-308, 312

detecting bad rules with promtool check
rules, 298

naming, 304-308
level, metric, and operations, 305

using, 297-300
when to use, 300-304

composing range vector functions, 302
how not to use recording rules, 303
reducing cardinality, 300
rules for APIs, 302

Index | 395

RED method (rate, errors, duration), 57
refresh interval menu (Grafana), 111
region labels, 317, 323, 331

in Slack, 337
registry, 44, 65

custom collector registered with default reg‐
istry, 222

custom registry for multiprocess exposition
with Gunicorn, 68

custom registry for Python client library, 77
metrics pushed to Graphite using a bridge,

79
registration with Go client library, 72

Registry.Gather, 79
regression, 293
regular expression matcher (=~), 236
regular expressions

expect regex failing in TCP probe, 200
matchers, 235, 328
patterns based on, use by Grok Exporter,

192
quick primer on, 152
RE2 engine for, 152
use in replace relabel action, 154
using to match targets in relabeling, 150

relabeling, 14, 149-162, 322
alert_relabel_configs, 323
automatic deduplication with, 158
choosing what to scrape, 150-153
hashmod action, 376
labeldrop and labelkeep actions, 165
metrics, using metric_relabel_configs, 164
providing URL parameters for Blackbox

exporters in, 205
support by remote write, 364
using to add labels from Kubernetes service

or pod metadata, 181
using to override scrape config settings, 163
using to specify target labels, 153-162

changing case, 160
job, instance, and __address__, 158
labelmap action, 159
lists, 161
replace action, 154

relabel_configs, 151
for Kubernetes API server scrapes, 178
versus metric_relabel_configs, 164

reliability, 370
remote read, 364, 378

remote write, 364
remote write endpoint, 364
rename system call, 136, 145
repeat_interval, 333
repetition of notifications, 326, 332
replace (relabel action), 154
reporting_enabled setting, 104
request logs, 10
resets function, 292
resident set size (RSS), 171
resolved notifications, 343
resource pressure for CPU, memory, and I/O,

133
restarts, 292
resultType

matrix, 244
scalar, 244
vector, 243

reverse proxy, 354
running Prometheus behind, 369

root user, 128
round function, 281
routes field, 327
routing, 326
routing tree, 326

configuring for Alertmanager, 327-334
grouping, 330
throttling and repetition, 332

visual editor for, 329
RSS (resident set size), 171
rule files, 297, 367

example, 298
Rules status page (Prometheus), 299
rule_files field, 298
running Prometheus, 19-23, 365

(see also deploying Prometheus)
configuration, 21
expression browser, 21
requirements, 19

S
SaaS (software as a service) monitoring sys‐

tems, 210
sample standard deviation, 255
sample_limit, 377
sampling

fundamental limitation of, 113
not catching every possible change, 293
for tracing, 9

396 | Index

scalar function, 278
scalars, 244

conversion to instant vector, 245
working with, 261-265

arithmetic operators, 261-263
comparison operators, 263-265
trigonometric operator atan2, 263

scaling Prometheus, 359, 362
scheme (scrape config), 162, 175
scrape errors, 32
scraper labels, 378
scrape_configs, 142

adapting for TLS, 352
for cgroup scraping with cAdvisor, 170
for Kubernetes API servers, 177
Prometheus scraping Consul Exporter, 188
showing several available options, 162

scrape_interval, 163, 299, 377
scrape_samples_post_metric_relabeling, 377
scrape_timeout, 163
scraping, 14, 23, 362

catching failed scrapes in Blackbox exporter,
316

choosing which targets to scrape in relabel‐
ing, 150-153

configuring Prometheus to scrape itself
using Basic Authentication, 355

in custom exporters, 226
how to scrape, 162-167

label clashes and honor_labels, 166
labeldrop and labelkeep, 165
metric_relabel_configs, 164

Kubelet embedded cAdvisor, 176
Prometheus scraping MySQLd Exporter,

190
prometheus.yml to scrape Grok Exporter,

193
prometheus.yml to scrape InfluxDB

Exporter, 212
scraping Prometheus servers, 377
scraping subset of targets, 376

SD (see service discovery)
seconds, 240
sectors, 129
selectors, 235-242

at (@) modifier, 242
matchers, 235
offset modifier, 241
range vector, 238

subqueries, 240
send_resolved field, 343
sensor labels, 131, 270, 272
sensors command, 130
server-side security, 351, 369

advanced TLS options, 353
enabling Basic Authentication, 354
enabling TLS, 351-353
security features from Prometheus, 351

service discovery, 4, 14, 139-167
how to scrape, 162-167

label clashes and honor_labels, 166
metric_relabel_configs, 164

Kubernetes, 174-183
mechanisms, 140-148

Consul, 146
EC2, 148-148
file SD, 142-145
HTTP SD, 145
static, 141
top-down versus bottom-up, 141

problems in, 375
relabeling, 149-162

choosing what to scrape, 150-153
using for target labels, 153-162

service labels, 317
services

administering, manual approach to, 6
instrumentation, 57
service role in Kubernetes, 177

servlets, 74
set method, 48
sets, 95
set_function method, 50
severity labels, 316, 327, 345
sgn function, 282
shard labels, 79
SIGHUP signal, 298, 367
SIGTERM signal, 367
silences, 325
silencing alerts, 325
simple linear regression, 293
simpleclient (Java), 72
single point of failure (SPOF), 371
size, counting, 47
Slack

customized message, 341
message with region and environment, 338
PagerDuty integration with, 335

Index | 397

slack_configs, region and env labels in, 337
SMART metrics, 134
smartctl command, 134
smoothing factor, 295
SMPT, 35
snake case for metric names, 61
SNMP, 210
SNMP-style exporters, 194, 210, 210

(see also Blackbox exporters)
default registry and, 222

software as a service (SaaS) monitoring sys‐
tems, 210

sort function, 288
sort_desc function, 288

using by clause, 251
source_labels, 150
source_match, 345
sqrt function, 280
SSH, 199
ssh_banner module, 200
stability guarantees, Prometheus versions, 20
stale markers, 237
staleness, 237

range vectors and, 239
for resolved alerts, 313

stalled metrics, 134
standard deviation, 255

(see also stddev)
standard variance, 256

(see also stdvar)
start, 247
start function, 242
start time, 245
start_http_server, 66
stat collector, 131
Stat panel, 113-114
State timeline panel, 117
StateSets, 84
statfs system call, 127
static config service discovery, 141
static typing (PromQL), 277
static_configs, 142, 287
StatsD, 210, 212-214
StatsD Exporter, 358
stddev, 255
stddev_over_time, 295
stdvar, 256
stdvar_over_time, 295
step, 245, 247

maximum number for query_range, 247
storage, 15

long-term, 17, 363-365
storage layer, problem in, 375
string type, 261
subqueries, 240, 302
suffixes (metrics), 49, 61
sum, 98, 100, 254

about, 252
by clause, 94, 251

using empty by or omitting by, 252
using in counter aggregation, 231
using in histogram of aggregates, 234
using rate before, 302
using with gauges, 229
using with summary, 232
without clause, 93, 95, 250

summary, 50
aggregating, 232
example in Prometheus text exposition for‐

mat, 82
metrics.Sample, 221
text exposition format for, 81
using rate before sum on, 253

sum_over_time, 295
symptoms, alerting on, 321, 330, 345
systemd, 170

T
table exceptions, 99
Table panel, 115
target labels, 88, 140, 153-162

clashes in and honor_labels, 166
hierarchy of, 154
instance target label, 132
job and instance, 250
metadata for, in file SD, 144
using relabeling to specify

case, 160
job, instance, and __address__, 158
labelmap action, 159
lists, 161
replace action, 154

variances in, 250
targets

creating in static config service discovery,
141

discovered by EC2, 148
for each individual application instance, 152

398 | Index

finding expensive targets, 375
in HTTP service discovery, 145
mapping from metadata using relabeling,

149
provided by Consul service discovery, 146
scraping subset of, 376
spotting metric missing from target using

unless, 274
Targets page, 22

scrape errors on, 32
showing Prometheus and Node Exporter, 29

target_match, 345
TCP probing, 199-201

checking if local SSH server is listening on
port 22, 199

ssh_banner module, 200
tcp_connect module, 200
tcp_connect_tls, 200

tcpdump, 8
team labels, 144, 317

EC2 instances, 152
removing using replace relabel action, 156
using defaults to remove succinctly, 157
using replace relabel action with, 154

teams
alerts grouped by, 331
routing alerts and notifications to, 328

templating
alerts, 318-321
Go templating language, 104
of notifications by Alertmanager, 337-343
template variables in Grafana, 118
using Ansible jinja2 to create targets for

Node Exporter, 141
text format (Prometheus), 4, 80

(see also exposition formats)
parsers for, 80

textfile collector, 134-137
timestamps, 137
using, 135

thread and worker pools, instrumentation, 59
throttling notifications, 326, 332
time, 49, 61

context manager and function decorator, 52
durations in Prometheus as used in

PromQL, 240
precision in Prometheus, 52
time controls in Grafana, 111
time URL parameter, 243

tracking latency, 51
time and date functions, 283-285
time function, 283
time series, 90

finding how many have same name, 251
number of, or cardinality, 99
total of rest of metric, avoiding, 98

Time series panel, 109-113
time controls, 111

timers, 216
timestamp function, 285
timestamps

aligning with start time and step, 246
exporters exposing, staleness and, 238
InfluxDB and, 212
in OpenMetrics format, 85
in Prometheus text exposition format, 82
returned by instant vector selector, 237
textfile collector and, 137
Unix, use of @ modifier with, 242

TLS, 354
advanced options, 353
enabling, 351-353
tcp probe connecting via, 200

TLS certificates, 175
TLS client authentication, 162
TLS/SSL certificate expiring, 201
tls_config, 176
tls_server_config, 353
__tmp prefix for labels, 162
topk operator, 242, 256
tracing, 9
transaction logs, 10
trend factor, 295
trending, 5
trigonometric functions, 282
trigonometric operators, 263
Twisted, 67
TYPE (metrics), 81, 84
types

changing, 277
static typing in PromQL, 277

U
uberagent, 125
uname collector, 132
unary operators, 261
UNIT metadata (metrics), 84
unit tests for instrumentation, 56

Index | 399

units
base units in Prometheus, 49
in metric names, 50, 61
quantiles and percentiles, 53

Unix
epoch, 82, 85
filesystems, 128
Note Exporter exposing metrics on, 27
time, 49

unless operator, 273
untyped (metric type), 81
UntypedValue, 220
up, 23, 29, 32, 270

added by Prometheus after each scrape, 273
adding version label from python_info to

all, 97
consul_up, 188
displaying up metrics in Grafana State time‐

line panel, 117
failed scrapes and, 316

uppercase (relabel action), 160
URL parameters (scrape config), 162
USE method (utilization, saturation, and

errors), 58
user mode, 127
UTC (Coordinated Universal Time), 284
UTF-8 encoding, 82

label values, 89

V
vector function, 278
vector matching, 265-275

many-to-many and logical operators,
271-275

many-to-one and group_left, 268-271
one-to-one, 266

vectors, 235
(see also instant vector selector)

version labels, 97, 270
versions of Prometheus, 20
vertical sharding, 359, 377
Vim, 15

W
waiting metrics, 134
wall of graphs, avoiding, 109
web configuration files, 352

launching Prometheus with, 352
web interface (Alertmanager), 345
Web Server Gateway Interface (WSGI), 66
--web.enable-lifecycle flag, 298, 367
--web.external-url flag, 369
--web.route-prefix flag, 369
webhook notifier, 334, 336, 337
webhook receiver, 336

written in Python 3, 337
weeks, 240
Windows Exporter, 125
WithLabelValues, 88
without clause, 250

avg without, 254, 312
by clause versus, 251
count without, 253
quantile without, 257
sum without, 93, 250

worker pools, instrumentation, 59
write_relabel_configs, 364
writing exporters (see exporters)
WSGI (Web Server Gateway Interface), 66

Y
YAML, 21, 143

multiline strings in, 300
year function, 278, 284
years, 240

400 | Index

About the Authors
Julien Pivotto is a leading contributor to the Prometheus server and the CNCF
ecosystem, having made significant contributions since 2017. Currently, he is a prin‐
cipal software architect and cofounder at O11y, where he specializes in providing
top-tier support for various observability tools, including Prometheus, Cortex, Loki,
and Jaeger. With years of experience, he is dedicated to helping organizations with
the deployment and maintenance of these tools, as well as providing custom develop‐
ment solutions.

Brian Brazil is the founder of Robust Perception and a Prometheus developer. He
works on monitoring issues with companies ranging from early-stage startups to
Fortune 500 corporations. He is well known in the Prometheus community, has given
countless presentations at conferences, and covers many aspects of Prometheus and
monitoring on his blog on the Robust Perception website.

Colophon
The animal on the cover of Prometheus: Up & Running is the tawny eagle (Aquila
rapax), a bird of prey native to Africa, the Middle East, and India. Measuring 60–
75 inches in length with a wingspan of 63–75 inches, the tawny eagle is slightly
smaller than other members of the Aquila genus. They are brown in color, with their
eponymous tawny coloration most prevalent in the upper body, giving way to darker
feathers on the tail.

Tawny eagles tend to make their nests atop tall trees, where monogamous breeding
pairs lay one to three eggs annually. They favor dry habitats such as deserts, steppes,
and savannas in which they feed on carrion, reptiles, and small mammals.

Due to their widespread habitat range, tawny eagles are not believed to be threatened.
However, the tawny eagle population is thought to be declining in West Africa due to
the encroachment of cultivated land into their habitat.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/

	Copyright
	Table of Contents
	Preface
	Expanding the Known
	The Evolution of Prometheus
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Introduction
	Chapter 1. What Is Prometheus?
	What Is Monitoring?
	A Brief and Incomplete History of Monitoring
	Categories of Monitoring

	Prometheus Architecture
	Client Libraries
	Exporters
	Service Discovery
	Scraping
	Storage
	Dashboards
	Recording Rules and Alerts
	Alert Management
	Long-Term Storage

	What Prometheus Is Not

	Chapter 2. Getting Started with Prometheus
	Running Prometheus
	Using the Expression Browser
	Running the Node Exporter
	Alerting

	Part II. Application Monitoring
	Chapter 3. Instrumentation
	A Simple Program
	The Counter
	Counting Exceptions
	Counting Size

	The Gauge
	Using Gauges
	Callbacks

	The Summary
	The Histogram
	Buckets

	Unit Testing Instrumentation
	Approaching Instrumentation
	What Should I Instrument?
	How Much Should I Instrument?
	What Should I Name My Metrics?

	Chapter 4. Exposition
	Python
	WSGI
	Twisted
	Multiprocess with Gunicorn

	Go
	Java
	HTTPServer
	Servlet

	Pushgateway
	Bridges
	Parsers
	Text Exposition Format
	Metric Types
	Labels
	Escaping
	Timestamps
	check metrics

	OpenMetrics
	Metric Types
	Labels
	Timestamps

	Chapter 5. Labels
	What Are Labels?
	Instrumentation and Target Labels
	Instrumentation
	Metric
	Multiple Labels
	Child

	Aggregating
	Label Patterns
	Enum
	Info

	When to Use Labels
	Cardinality

	Chapter 6. Dashboarding with Grafana
	Installation
	Data Source
	Dashboards and Panels
	Avoiding the Wall of Graphs

	Time Series Panel
	Time Controls

	Stat Panel
	Table Panel
	State Timeline Panel
	Template Variables

	Part III. Infrastructure Monitoring
	Chapter 7. Node Exporter
	CPU Collector
	Filesystem Collector
	Diskstats Collector
	Netdev Collector
	Meminfo Collector
	Hwmon Collector
	Stat Collector
	Uname Collector
	OS Collector
	Loadavg Collector
	Pressure Collector
	Textfile Collector
	Using the Textfile Collector
	Timestamps

	Chapter 8. Service Discovery
	Service Discovery Mechanisms
	Static
	File
	HTTP
	Consul
	EC2

	Relabeling
	Choosing What to Scrape
	Target Labels

	How to Scrape
	metric_relabel_configs
	Label Clashes and honor_labels

	Chapter 9. Containers and Kubernetes
	cAdvisor
	CPU
	Memory
	Labels

	Kubernetes
	Running in Kubernetes
	Service Discovery
	kube-state-metrics

	Alternative Deployments

	Chapter 10. Common Exporters
	Consul
	MySQLd
	Grok Exporter
	Blackbox
	ICMP
	TCP
	HTTP
	DNS
	Prometheus Configuration

	Chapter 11. Working with Other Monitoring Systems
	Other Monitoring Systems
	InfluxDB
	StatsD

	Chapter 12. Writing Exporters
	Consul Telemetry
	Custom Collectors
	Labels

	Guidelines

	Part IV. PromQL
	Chapter 13. Introduction to PromQL
	Aggregation Basics
	Gauge
	Counter
	Summary
	Histogram

	Selectors
	Matchers
	Instant Vector
	Range Vector
	Subqueries
	Offset
	At Modifier

	HTTP API
	query
	query_range

	Chapter 14. Aggregation Operators
	Grouping
	without
	by

	Operators
	sum
	count
	avg
	group
	stddev and stdvar
	min and max
	topk and bottomk
	quantile
	count_values

	Chapter 15. Binary Operators
	Working with Scalars
	Arithmetic Operators
	Trigonometric Operator
	Comparison Operators

	Vector Matching
	One-to-One
	Many-to-One and group_left
	Many-to-Many and Logical Operators

	Operator Precedence

	Chapter 16. Functions
	Changing Type
	vector
	scalar

	Math
	abs
	ln, log2, and log10
	exp
	sqrt
	ceil and floor
	round
	clamp, clamp_max, and clamp_min
	sgn
	Trigonometric Functions

	Time and Date
	time
	minute, hour, day_of_week, day_of_month, day_of_year, days_in_month, month, and year
	timestamp

	Labels
	label_replace
	label_join

	Missing Series, absent, and absent_over_time
	Sorting with sort and sort_desc
	Histograms with histogram_quantile
	Counters
	rate
	increase
	irate
	resets

	Changing Gauges
	changes
	deriv
	predict_linear
	delta
	idelta
	holt_winters

	Aggregation Over Time

	Chapter 17. Recording Rules
	Using Recording Rules
	When to Use Recording Rules
	Reducing Cardinality
	Composing Range Vector Functions
	Rules for APIs
	How Not to Use Rules

	Naming of Recording Rules

	Part V. Alerting
	Chapter 18. Alerting
	Alerting Rules
	for
	Alert Labels
	Annotations and Templates
	What Are Good Alerts?

	Configuring Alertmanagers in Prometheus
	External Labels

	Chapter 19. Alertmanager
	Notification Pipeline
	Configuration File
	Routing Tree
	Receivers
	Inhibitions

	Alertmanager Web Interface

	Part VI. Deployment
	Chapter 20. Server-Side Security
	Security Features Provided by Prometheus
	Enabling TLS
	Advanced TLS Options
	Enabling Basic Authentication

	Chapter 21. Putting It All Together
	Planning a Rollout
	Growing Prometheus
	Going Global with Federation
	Long-Term Storage
	Running Prometheus
	Hardware
	Configuration Management
	Networks and Authentication

	Planning for Failure
	Alertmanager Clustering
	Meta- and Cross-Monitoring

	Managing Performance
	Detecting a Problem
	Finding Expensive Metrics and Targets
	Reducing Load
	Horizontal Sharding

	Managing Change
	Getting Help

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

